Фрезы по металлу: основные виды и их предназначение. Материалы, применяемые для изготовления фрез Изготовление фрез по металлу

Дисковая отрезная фреза (ДОФ) изготавливается в форме "блина", торцевая часть которого оснащается зубцами. Она применяется для создания канавок заданной глубины и толщины, а также для отпиливания заготовок из черных металлов и стальных сплавов.

1

Указанный ГОСТ подразделяет все дисковые отрезные фрезы на два класса - для отрезных работ и для выполнения шлицев, и на три типа – с мелким, средним и крупным зубом. Маркировка таких фрез – 2254-0698–2254-1556. К основным их характеристикам ГОСТ относит следующие величины (в миллиметрах):

  • ширина – 0,2–6;
  • диаметр – 20–315;
  • сечение посадочного отверстия – 5–40;
  • сечение ступицы – 10–80;
  • шаг – 0,8–25.

Количество зубьев ДОФ по металлу варьируется в пределах 18–200.

ГОСТ 2679 разрешает изготавливать фрезы:

  • с шириной ступицы больше на 0,2 мм по сравнению с величиной режущей части инструмента;
  • без ступицы.

Исходным материалом для производства отрезных фрез является . Она должна отвечать требованиям ГОСТ 19265.

Шероховатость готового инструмента для фрезерования должна быть не более:

  • 8 мкм (передняя поверхность зубцов);
  • 1,25 мкм (торцовые боковые части);
  • 10 мкм (спинка зубцов);
  • 6,3 мкм (задняя часть зубцов и посадочное отверстие).

Дисковой инструмент для фрезерования

  • 62–66 HRC (для изделий шириной более 1 мм);
  • 61–65 (ширина до 1 мм).

Обратите внимание! Твердость замеряется на торцах инструмента на дистанции до 5 мм от его рабочих кромок. Если фрезы выпускаются из сплавов с большим содержанием кобальта и ванадия (5 и 3 % соответственно), показатели их твердости следует увеличить на несколько единиц.

Торцовое биение фрез имеет допуск от 0,04 до 0,4 мм, радиальное – 0,05–0,1 мм (для смежных зубцов) и 0,08–0,16 (для зубцов, расположенных в противоположных направлениях). Эти допуски замеряются на предмет их соответствия ГОСТу посредством специальной оправки.

Период стойкости отрезного инструмента измеряется в минутах. Он должен отвечать таким требованиям:

  • 140 мин (фрезы сечением более 160 мм);
  • 110 мин (110–160 мм);
  • 70 мин (63–100 мм);
  • 55 мин (до 63 мм).

Затупление отрезных фрез определяется по особому критерию. Под ним понимают износ (допустимый), который составляет 0,4 мм для инструмента сечением более 63 мм и 0,2 мм для фрез до 63 мм.

2

Проверка ДОФ на стойкость и работоспособность осуществляется на образцах, изготовленных из стали 45, на скорости резания от 20 до 100 м/мин. Испытания выполняются с использованием проставочных колец и спецоправки на . Длина (общая) фрезерования каждого проверяемого инструмента по металлу при этом составляет 25–50 см.

Проверочную фрезерную обработку производят с обязательной подачей охлаждающей жидкости. В качестве таковой ГОСТ требует использовать водный раствор эмульсола (содержание по массе – 5 %).

После завершения испытаний на режущих частях ДОФ должны отсутствовать явления выкрашивания. Если фреза после проверочного фрезерования готова к дальнейшему применению, она считается прошедшей проверку на работоспособность.

Проверка работоспособности дисковой отрезной фрезы

Внешний вид изделий анализируется по ГОСТу визуально. Осмотр осуществляется при помощи лупы с четырехкратным увеличением. Твердость ДОФ проверяют по стандарту 9013, шероховатость – по ГОСТ 9378.

Важный момент. При анализе характеристик отрезных фрез по металлу допускается применять средства измерения со следующими максимальными погрешностями:

  • 35 % величины допуска при замере углов;
  • 25 % при анализе расположения поверхностей и контроле форм инструмента.

Правила перевозки фрез, а также их хранения подробно описаны в ГОСТ 18088.

3

Как было сказано, интересующий нас дисковый инструмент делают из быстрорежущих сплавов. К таким принято относить высоколегированные стали с повышенной теплостойкостью. Эта их отличительная особенность достигается за счет введения в сплав ванадия, хрома, молибдена (карбидообразующие добавки) в сочетании с вольфрамом.

Чаще всего для производства отрезных фрез используют сталь следующих марок – Р18, Р12, Р6М5.

На заводы, где изготавливается режущий инструмент, эти сплавы поступают в поковках (так принято называть стальные заготовки). Их структура – карбиды плюс перлит сорбитообразного вида.

Когда фрезы нагревают под закалку, в сплавах формируется аустенит. Он имеет небольшое (относительно) содержание углерода и весьма активно легируется. После закалочной процедуры режущий инструмент получает особую структуру. Она состоит из остаточного аустенита, различных карбидов и мартенсита с мелкими иглами.

Дисковые отрезные фрезы

Главными легирующими добавками для сталей быстрорежущей группы являются кобальт, молибден, вольфрам и ванадий. Эти элементы обеспечивают требуемую красностойкость материала. Обязательно в подобные сплавы добавляют и хром. Особое внимание при этом обращают на количество углерода в стали. Его должно быть столько, чтобы в сплаве смогли сформироваться карбиды вводимых добавок. Если, например, углерода в стали будет менее 0,7 %, готовые фрезы не будут обладать необходимой твердостью.

Влияние легирующих элементов на свойства сплавов, применяемых для выпуска дисковых фрез:

  • Кобальт увеличивает красностойкость, но при этом удаляет из стали углерод, а также снижает ее вязкость и прочность.
  • Хром придает металлу повышенную прокаливаемость. Его вводят в количестве не более 3,5–4 %.
  • Молибден и вольфрам – главные легирующие добавки. Они обеспечивают высокую степень красно- и эксплуатационной износостойкости стали.
  • Негативное влияние на характеристики быстрорежущих стальных композиций (а значит, и на продукцию, получаемую из них) оказывает сера и фосфор. Эти элементы должны содержаться в сплавах в количествах до 0,015 и 0,03 % соответственно.

В большинстве случаев отрезной дисковый инструмент сейчас изготавливается из стали Р6М5. Фрезы из нее получаются менее износостойкими, чем из сплавов Р12 и Р18. Но зато стоимость Р6М5 ощутимо ниже.

Максимальной износостойкостью характеризуются фрезы из стали Р18. По цене они самые дорогие, так как содержат наибольшее количество дорогостоящего вольфрама. А вот инструмент из стали Р12 считается самым лучшим по показателю теплостойкости.

4

Качественная термическая обработка дискового инструмента гарантирует его высокие эксплуатационные характеристики. Фрезы подвергаются разным вариантам закалки. Это существенно увеличивает их износостойкость. Закалка выполняется по таким методикам:

  • Ступенчатая. Операция предполагает охлаждение заготовок в горячей (около +600 °С) атмосфере, а после этого на открытом воздухе.
  • Непрерывная. Этот вид закалки применяется редко, так как он выполняется с ускоренным охлаждением, что нередко приводит к появлению трещин на инструменте.
  • Прерывистая. Популярная технология, исключающая риск появления трещин в готовых изделиях.
  • Светлая. Разновидность ступенчатой термической обработки. Для ее осуществления нужно охлаждать сталь специальными соединениями (чаще всего – смеси воды и расплавленных щелочей).

В редких случаях используются методики изотермической закалки (полной и неполной), а также индукционного нагрева.

Методика изотермической закалки стали

Нагрев заготовок при термообработке производится:

  • высокочастотными токами;
  • в защитной среде в электрических и газовых агрегатах;
  • в специальных соляных ваннах.

Отпуск фрез из быстрорежущих сплавов выполняют так, чтобы содержание аустенита (остаточного) было снижено до минимума. Добиться этого несложно. Используется технология многократного отпуска. Количество операций определяется техусловиями осуществления процедуры и типом применяемой стали. Оптимальными вариантами отпуска принято считать следующие схемы:

  1. 2–3-кратная операция при температуре 600° с обязательной выдержкой заготовок между этапами отпуска в течение 15–30 мин.
  2. Стандартная процедура при температуре 560°. В этом случае инструмент выдерживается в течение 60 минут после каждой стадии его термической обработки.

Важно! Отрезной инструмент всегда подвергается тщательной очистке и последующей мойке после выполнения операций термообработки.

5

Процедура изготовления интересующего нас отрезного инструмента в целом выглядит следующим образом:

  1. Анализ быстрорежущих сплавов на чистоту, показатель твердости и химсостав. Последний определяется по ГОСТ 19265.
  2. Штамповка заготовок. Эта операция выполняется на кузнечном участке предприятия.
  3. Шлифовка боковых торцов инструмента и зачистка заусенцев по всей их поверхности.
  4. Анализ деталей на наличие поверхностных изъянов и на соответствие их геометрических параметров и конфигурации.
  5. Просушивание фрез. Процедура осуществляется при температуре не выше 200° на протяжении получаса (максимум).
  6. Закалка по одной из методик, описанной выше.
  7. Двойной либо тройной отпуск, нужный для обеспечения требуемых технологических характеристик фрез.
  8. Анализ готового режущего инструмента на наличие волосовин и трещин, а также на величину твердости.

Анализ режущего инструмента на наличие волосовин и трещин

Финал работ – финишная обработка (механическими способами) отрезных фрез. Под таковой понимают заточку их режущих частей и окончательной тонкое шлифование этих участков инструмента.

В последнее время процесс изготовления ДОФ на отечественных предприятиях был существенно модернизирован. Производители интенсифицируют все операции посредством таких современных методик:

  • Применение магнитных полей и ультразвуковых волн на этапах отпуска, очистки загрязнений на поверхности фрез и их закалки.
  • Проведение дополнительных спецмероприятий при термообработке инструмента (отжиг, нормализация, охлаждение в изотермической горячей атмосфере, а также в особых по конфигурации валках и штампах).
  • Использование высокоскоростных технологий нагрева заготовок и новейших методов термомеханической высокотемпературной обработки инструмента из сплавов быстрорежущей группы.

Благодаря новым технологиям готовые фрезы, о которых мы говорили в статье, получаются по-настоящему тепло- и износостойкими.

Материалы, применяемые для изготовления фрез, должны обладать следующими свойствами: высокой твердостью, превышающей твердость обрабатываемого материала, высокой износостойкостью и теплостойкостью, высокой механической прочностью.
Для изготовления режущих инструментов и, в частности, фрез применяют углеродистые легированные инструментальные стали, быстрорежущие инструментальные стали, твердые сплавы, минералокерамику, эльборы, синтетические и естественные алмазы.
Для изготовления режущего инструмента применяют инструментальные углеродистые стали следующих марок: У7, У8, УО, У10, У11, У12, У13 (буква У указывает на то, что сталь углеродистая, а цифры показывают среднее содержание углерода в десятых долях процента). Инструментальные стали повышенного качества, имеющие минимальное количество вредных примесей, отмечают буквой А: У10А, У8А и т. д.
Углеродистая инструментальная сталь обладает низкими режущими свойствами. Режущие инструменты, изготовленные из такой стали, позволяют вести обработку при температуре в зоне резания до 200 - 250°С и при скоростях резания в пределах 10 - 15м/мин.
Легированная инструментальная сталь по химическому составу отличается от углеродистой инструментальной стали лишь наличием одного или нескольких легирующих элементов: хрома, вольфрама, молибдена, ванадия.
Чаще всего для изготовления прорезных, фасонных и концевых фрез малых диаметров применяют следующие марки стали: ХГ, ХВ5, ОХС и ХВГ.
Легированная инструментальная сталь обладает более высокими режущими свойствами, чем углеродистая инструментальная сталь (температура в зоне резания 300 - 350°С, скорости резания 20 - 25 м/мин).
Быстрорежущая инструментальная сталь в отличие от углеродистой и легированной инструментальной стали обладает большим сопротивлением износу и большей теплостойкостью. Она обладает красностойкостью, т. е. не теряет своих свойств при температуре красного каления (550 - 600°С).
Быстрорежущие стали делятся на стали нормальной производительности (Р18, Р12, РО, Р18М, РОМ, Р6М5, Р18Ф2) и стали повышенной производительности (Р18Ф2К5, РОФ2К5, РОФ2К5, РОФ2К10, РОФ5, Р14Ф4, Р6МЗ, Р10Ф5К5 и др), легированные кобальтом (К), ванадием (Ф) и молибденом (М).
Из быстрорежущих сталей нормальной производительности лучшей является сталь Р18, которая легко обрабатывается шлифованием и малочувствительна к прижогам.
Стали повышенной производительности обладают более высокими красно- стойкостью и режущими свойствами. Быстрорежущая сталь нормальной производительности может работать при скоростях резания до 60 м/мин и выше, а повышенной производительности до 100 м/мин и выше.
Термическая обработка быстрорежущей стали . Закалка применяется для повышения твердости и сопровождается уменьшением вязкости.
Оптимальная температура при закалке быстрорежущей стали Р18 для тонких изделий (5 - 8 мм) - 1260°, для изделий толщиной более 10 - 15 мм - 1280°. Быстрорежущая сталь медленно прогревается, высокий нагрев приводит к обезуглероживанию и образованию трещин, поэтому изделия из быстрорежущей стали медленно нагревают при закалке до температуры 820 - 850°. Окончательный нагрев лучше всего производить в соляных ваннах, так как это позволяет избежать обезуглероживания стали. Выдержка при температуре закалки измеряется долями минуты. Быстрорежущая сталь после закалки обязательно должна быть подвергнута многократному отпуску. Оптимальная температура отпуска для стали Р18 - 580°, а для стали P9 - 560°.
Быстрорежущие стали повышенной производительности требуют тщательного соблюдения режимов термообработки. Отступление от рекомендуемых режимов (особенно при обработке кобальтовых сталей) может привести к понижению твердости и сильному обезуглероживанию).
Твердые сплавы допускают работу со скоростями резания, превышающими в 5 - 10 раз скорости обработки быстрорежущими инструментальными сталями, и не теряют режущих свойств при температуре до 850°С и выше.
Металлокерамические твердые сплавы состоят из карбидов вольфрама, титана или тантала и кобальта, связывающего эти вещества. Различают вольфрамо-кобальтовые металлокерамические сплавы (ВК2, ВКЗ, ВК6, ВК4В, ВК6В, ВК6М, ВК8, ВК10, ВК10М, ВК15М и др.) и титано-вольфрамо-кобальтовые (Т5К10, Т14К8, Т15К6, ТЗОК4, Т60К6 и др.). Цифры после буквы К указывают процентное содержание в сплаве кобальта, после буквы Т - карбидов титана; остальное составляют карбиды вольфрама. Например, сплав Т14К8 состоит из 14% карбида титана, 8% кобальта и 78% карбида вольфрама.
В настоящее время выпускают трех-карбидные твердые сплавы марок Т5К12В, ТТ7К12, ТТ7К5, ТТ10К8Б и др., состоящие из карбидов вольфрама, титана, тантала, кобальта. Эти сплавы характеризуются высокой прочностью. Твердый сплав марки ТТ7К12 допускает работу с 1,5 - 2 раза большими.
подачами на зуб, чем сплав Т5К10. Твердые сплавы выпускаются в виде пластинок стандартных форм и размеров
Вольфрамо-кобальтовые сплавы применяют для обработки хрупких материалов: чугуна, бронзы, закаленной стали, пластмасс, фарфора и т. п. Твердые сплавы титано-вольфрамовой группы предназначены главным образом для обработки сталей. При выборке марок твердого сплава можно руководствоваться данными табл. 24.

В настоящее время фрезы все чаще оснащают пластинками твердого сплава. Выпускаются также цельные твердосплавные фрезы.
Минералокерамические сплавы приготовляют на основе окиси алюминия (А120а) = корунда путем тонкого размола, прессования и спекания. Выпускают их, как и твердые сплавы, в виде пластинок стандартных форм и размеров.
Минералокерамические пластинки марок ЦМ-332 (микролит), ЦВ-13 и ЦВ-18 (термокорунд) обладают большей теплостойкостью и износостойкостью, чем некоторые твердые сплавы. Однако они имеют пониженную по сравнению с твердыми сплавами прочность и повышенную хрупкость. Минеральная керамика находит применение при чистовом и тонком фрезеровании торцовыми фрезами (головками).

Кольцевая фреза (или корончатое сверло) из быстрорежущей стали изготавливается целиком из одной заготовки. Полость фрезы и хвостовик вытачиваются, стружкоотводящие канавки фрезеруются, а потом прошлифовываются. Корпус кольцевой фрезы подвергается сложному процессу термообработки, при котором твердость режущих кромок достигает 55-62 единиц по шкале Роквелла, а хвостовик и удаленная от режущих кромок часть корпуса 44-46 единиц. Для производства корончатых сверл из быстрорежущей стали используют различные ее виды, в основном применяя сталь типа М2, аналогичную отечественной марке Р6М5 или Р18. Для корончатых сверл способных сверлить нержавеющую сталь берут кобальтовую сталь М35 или М42. Качественные китайские кольцевые фрезы делают из аналогов стали М2, которые называются HSSE или HSS XE .

Внутри кольцевой фрезы есть цилиндрическая полость, диаметр которой у режущих кромок несколько меньше, чем в глубине. Этот прием позволяет снизить трение между стенкой фрезы и боковой поверхностью керна, образовывающегося при сверлении. Если затачивать кольцевую фрезу многократно и таким образом срезать это обнижение диаметра отверстия, то возникает риск заклинивания фрезы. Сужение диаметра отверстия организуется примерно на глубину не более 12-15 мм от начала сверла, то есть, затачивать корончатое сверло больше чем на эту величину от первоначального размера не имеет смысла.

Хвостовик отверстия кольцевой фрезы из быстрорежущей стали оборудован отверстием для выталкивающего штифта (пилота). Диаметр штифта для сверл быстрорезов обычно 6,34 мм. Отверстие калибровано, чтобы обеспечить точное прицеливание и надежную экстракцию керна после отсверливания. Некоторые производители сверл низкого качества не могут обеспечить повторяемость отверстий в хвостовике и прибегают к такому решению, как комплектация каждого корончатого сверла отдельным пилотом. Это конечно не от хорошей жизни. Как правило, для обеспечения требований минимальной толщины стенки, штифты у кольцевых фрез диаметром 12-14 мм тоньше, до 4 мм диаметром.

Поскольку пластичность режущих кромок у кольцевых фрез из стали M 2 выше, чем у твердосплавных сверл, на них не применяется тройная заточка. Значит, зубья затачиваются либо по одному шаблону, либо применяется двойная заточка, при которой каждый второй зуб имеет одинаковую форму.

ПРОИЗВОДСТВО КОЛЬЦЕВЫХ ФРЕЗ

Во всем мире относительно много производителей кольцевых фрез из быстрорежущей стали. Самым сложным оборудованием для их производства являются вакуумные печи для термообработки и нанесения износостойких покрытий, а также многоосевые шлифовальные обрабатывающие центры.

ПРЕИМУЩЕСТВО КОЛЬЦЕВЫХ ФРЕЗ БЫСТРОРЕЗОВ

Как уже было сказано, главным преимуществом быстрорежущих кольцевых фрез является большая пластичность корпуса и, главное режущих кромок. Пластичность корпуса понятие относительное, это подтвердят пользователи, которые видели обломки корпусов поломанных фрез. Ломаются кольцевые фрезы в основном от неправильного обращения и этого легко избежать, если придерживаться правил .

Другое преимущество проистекает из технологии производства. Проще выточить фрезу из заготовки целиком, чем припаивать зубья к ее корпусу. При небольшом объеме внутренней полости, отходов ценной быстрорежущей стали не много, поэтому себестоимость кольцевых фрез диаметром до 33 мм невысока.

Кольцевые фрезы из быстрорежущей стали хорошо поддаются заточке. Для этого существуют не сложные в освоении заточные станки. Заточка одного сверла на таком станке производится за 15-20 минут.

НЕДОСТАТКИ

Главный недостаток, как обычно, есть продолжение достоинств. Низкая, по сравнению с твердым сплавом, твердость и невысокая термостойкость, делают кольцевые фрезы из быстрорежущей стали неустойчивыми при сверлении легированных сталей и особенно жаростойких хромоникелевых сталей. Ниже ресурс, ниже рекомендованные скорости резания. Соответственно ниже производительность.

РЕКОМЕНДОВАННАЯ ЧАСТОТА ВРАЩЕНИЯ ДЛЯ HSS -КОЛЬЦЕВЫХ ФРЕЗ

H . S . S Кольцевые фрезы

Материал

Легированная сталь

Низколегированная сталь

Конструкционная сталь

Скорость резания (Vc)

Диаметр фрезы, мм

12-15

530-470-430

800-710-640

930-830-740

16-20

400-350-320

600-530-480

700-620-560

21-25

300-280-260

460-420-380

530-490-450

26-30

250-230-210

370-340-320

430-400-370

31-35

200-190-180

310-290-270

360-340-320

36-40

180-170-160

270-250-240

310-290-280

41-45

160-150-140

230-220-210

270-260-250

46-50

140-135-130

210-200-190

240-230-220

51-60

125-120-110

190-170-160

220-200-190

61-70

100-95-90

160-150-140

180-170-160

H.S.S Annular Cutter
Material Alloy Steel Mild Steel Iron Plate
Cutting Speed (Vc) 20 30 35
Diameter(㎜) Recommended RPM
12-15 530-470-430 800-710-640 930-830-740
16-20 400-350-320 600-530-480 700-620-560
21-25 300-280-260 460-420-380 530-490-450
26-30 250-230-210 370-340-320 430-400-370
31-35 200-190-180 310-290-270 360-340-320
36-40 180-170-160 270-250-240 310-290-280
41-45 160-150-140 230-220-210 270-260-250
46-50 140-135-130 210-200-190 240-230-220
51-60 125-120-110 190-170-160 220-200-190
61-70 100-95-90 160-150-140 180-170-160

Одно из основных условий высокопроизводительной работы режущего инструмента -

правильный выбор инструментального ма­териала. Для изготовления режущих

элементов фрезерного инст­румента в деревообработке применяют

инструментальные стали (легированные, быстрорежущие), твердые сплавы,

металлокерамические материалы. Для изготовления корпусов инструментов

ис­пользуют конструкционную качественную сталь, конструкционную легированную

сталь, а также специальные легкие сплавы.

Легированные инструментальные стали. Эти стали в своем со­ставе содержат

легирующие элементы (хром X, вольфрам В, ва­надий Ф и др.), повышающие их

режущие и другие свойства (на­пример, износостойкость возрастает в 2-2,5 раза

по сравнению с износостойкостью углеродистых инструментальных сталей). Для

изготовления цельных насадных фрез, а также сменных резцов и ножей в сборных

фрезах широко используют хромовольфрамованадиевые стали марок Х6ВФ и 9Х5ВФ.

Быстрорежущие инструментальные стали. Эти стали обладают более высокими

режущими свойствами по сравнению с обычными легированными сталями вследствие

дереворежущих инструментов используют следующие марки быстрорежущих ста­лей:

Р4, Р9, Р12, Р18, Р6МЗ, Р6М5. Вольфрамомолибденовые стали марок 6РМЗ и Р6М5

значительно повышают прочность и изно­состойкость инструмента. Вследствие

значительного содержания молибдена режущие свойства этих сталей близки к

режущим свой­ствам быстрорежущих сталей Р12 и Р18, несмотря на то, что

со­держание вольфрама в них в 2-3 раза меньше.

Твердые металлокерамические сплавы. Основные компоненты твердых сплавов -

карбиды вольфрама, титана и тантала. Ко­бальт в составе твердых сплавов играет

роль цементирующей связки. В деревообработке наибольшее распространение

получили однокарбидные металлокерамические твердые сплавы, содержа­щие карбиды

вольфрама (марки ВК6, ВК6М, ВК8, ВК8В, ВК15).

При изготовлении инструмента с пластинками твердого спла­ва, как правило,

используют стандартные пластинки, которые крепят к державке или корпусу

методом пайки или механичес­кими устройствами.

Насадные фрезы

Для фрезерования древесины и древесных материалов ши­роко используют насадные

фрезы, отличительная особенность ко­торых- отверстия для насадки на шпиндель

станка или непосред­ственно на вал электродвигателя.

Насадные фрезы в зависимости от конструктивного исполнения разделяют на

цельные и сборные. В свою очередь цельные насад­ные фрезы могут быть

одинарными и в виде наборов фрез (составные). Набор цельных фрез чаще всего

представляет собой группу фрез, подобранных для обработки профилей деталей,

получение которых одинарными фрезами трудно, непроизводительно или

не­возможно. Набор цельных фрез закрепляют на одном общем валу. В набор могут

входить фрезы одинаковые по параметрам или раз­ные. Цельные, фрезы

изготавливают из одной заготовки легиро­ванной стали или из конструкционной

стали с припаянными пла­стинками твердого сплава или легированной стали. По

оформлению задней поверхности зуба дельные фрезы разделяют на затылованные и

с прямой задней гранью (с остроконечными зубьями). Затылованные цельные фрезы

чаще всего предназначены для фасонного фрезерования различных профилей,

режущая кромка у них фа­сонная.

В зависимости от формы режущих кромок получается тот или иной профиль

обрабатываемых деталей. Зубья фасонных затылованных фрез имеют плоскую

переднюю грань; заднюю их грань чаще всего оформляют по кривым архимедовой

спирали или по дугам окружности, проведенным из смещенного центра.

Особен­ность затылованных фрез в том, что при переточках по передней грани

они сохраняют постоянство профиля режущей кромки в осе­вом сечении зуба

Диаметры посадочного отверстия d у фрез цельных фасонных составляют 22;

27 и 32 мм, что в большинстве случаев совпадает с соответствующими размерами

оправок фрезерных станков. Внеш­ний диаметр D фасонных фрез 80; 100 и

Фасонные цельные затылованные фрезы имеют ряд достоинств: сохраняют угловые

параметры за весь срок службы инструмента, что обеспечивает постоянство

профиля обрабатываемых деталей, удобны в эксплуатации, хорошо сбалансированы.

Однако имеют и недостатки, основной из которых - нерациональное использование

легированной инструментальной стали: эффективно используется не более 10-20 %

массы фрезы.

У фрез с остроконечными зубьями передняя и задняя грани имеют плоскую форму в

плоскостях перпендикулярных оси вра­щения фрезы. Конструкции фрез данного

типа довольно разнооб­разны. К группе фрез с остроконечными зубьями относятся

фрезы для фасонного фрезерования, пазовые, для фрезерования шипов и др. В

зависимости от назначения и конструкции фрезы с ост­роконечными зубьями

затачивают по передней или задней грани. Эти фрезы могут быть изготовлены

целиком из легированной или конструкционной стали (корпус) с припаянными

пластинками бы­строрежущей стали или твердого сплава на зубьях фрезы. В

за­висимости от вида выполняемых работ и сложности профиля дета­ли фрезы с

остроконечными зубьями могут быть одинарными, со­ставными (составлены из

разных фрез) или в виде комплектов из нескольких однотипных фрез.

Боковые режущие кромки фрез, обеспечивающие размер по ши­рине В паза,

имеют задний угол 3°. Для сохранения ширины В постоянной зубья

затачивают по задним граням. Пазовые фрезы для поперечных пазов кроме основных

зубьев, форми­рующих размер В, имеют с двух сторон подрезающие зубья с

пе­редним углом 45°. Подрезающие зубья (подрезатели) выступают над основной

окружностью резания на 0,5 мм и служат для обес­печения качественной обработки.

Существуют аналогичные по кон­струкции пазовые фрезы, оснащенные пластинками

твердого сплава.

Для плоского цилиндрического фрезерования применяют фрезы с остроконечными

зубьями, оснащенными пластинками твердого сплава. Эти фрезы чаще всего

используют в мебельном производ­стве при обработке щитов, облицованных

шпоном, пластиками и другими материалами. Для повышения качества обработки со

сто­роны облицовочного слоя (устранения сколов) зубья имеют на­клон к оси

вращения. Наклон режущей кромки выбирают таким образом, чтобы сила Р была

направлена в глубь массива. При фрезеровании плит, облицованных с двух

сторон, применяют фре­зы с двусторонним наклоном режущих кромок, что

обеспечивают составные фрезы, состоящие из двух одинаковых фрез, но с раз­ным

наклоном зубьев, или одинарные фрезы с двумя рядами зубьев. Угол наклона

зубьев к оси фрезы обычно 15-20°.

При фрезеровании древесных материалов (ДСтП, ДВП, пла­стиков и др.)

рационально использовать твердый сплав в качестве инструментального

материала. В зависимости от профиля обраба­тываемой детали могут быть

применены стандартные пластинки или пластинки из пластифицированного твердого

сплава. Доволь­но часто приходится перешлифовывать стандартные пластинки

твердого сплава, чтобы придать им требуемую форму и размеры. Перешлифовку

Делают алмазными кругами повышенной произво­дительности. В целях

рационального использования твердого спла­ва, а также в зависимости от

профиля режущей кромки пластин­ки припаивают по передней или задней грани

зуба. Так, для фрез, предназначенных для плоского или углового фрезерования,

более экономичное использование пластинки будет при располо­жении ее по

задней грани, однако при этом должна быть обеспе­чена надлежащая прочность

припайки. У фрез для фасонной об­работки пластинки твердого сплава, как

правило, припаивают к передней грани.

Окончательное профилирование режущих кромок фрезы дела­ют после припайки

пластинок. Очертание профильных режущих кромок у фасонных фрез, оснащенных

твердым сплавом, может быть самым разнообразным.

Для фрезерных станков наибольшее распространение получили конструкции сборных

насадных фрез, представленные на рис. 9. Дисковая пазовая фреза предназначена

для фрезеро­вания пазов и проушин на станках с шипорезной кареткой. Такая фреза

содержит вставные ножи 1, укрепляемые в клиновых пазах корпуса 4

клиньями 2 и распорными винтами 3. Внешний диаметр D

фрез 200; 250; 320 и 360 мм. Ножи изготавливают из стали или оснащают

пластинками твердого сплава длиной 50 мм и шири­ной 8; 12; 16; 20 мм. Диаметр

посадочного отверстия 32 и 40 мм.

Цилиндрическая сборная фреза с прямыми ножами (рис. 9,6) имеет

центробежно-клиновой способ крепления ножей. Фреза со­стоит из корпуса 4,

ножей 1, клиньев 2 и распорных болтов 3: При

вывинчивании болтов 3 клинья 2 прочно закрепляют ножи в

корпусе. Для надежного крепления ножей усилие затяжки со­ставляет 30-40 Н при

длине ключа 120-140 мм. Во время вра­щения фрезы под действием центробежных сил

усилие зажима ножа в корпусе возрастает.

Фрезы выпускают в двух исполнениях: исполнение А - с плос­кими стальными

ножами длиной 40; 60; 90; ПО; 130; 170 и 200 мм; исполнение Б - с ножами,

оснащенными пластинками твердого сплава ВК15. Внешний диаметр фрез 80; 100;

125; 140; 160 и 180 мм. Существуют аналогичные конструкции фрез для

про­фильного фрезерования, а также нарезки шипов.

Составные фрезы собирают (составляют) из двух и более цель­ных фрез для

обработки сложных (двухсторонних) профилей, имеющих участки, расположенные в

плоскости вращения фрезы. Сборные насадные фрезы имеют сменные режущие

элементы - резцы или ножи. В этом их основная особенность. Сборные насад­ные

фрезы состоят из корпуса, режущих элементов в виде ножей или резцов, деталей

крепления, регулирования, центрирования и зажатия на шпинделе станка. Сборные

насадные фрезы обеспе­чивают постоянство диаметра резания независимо от

переточек.

Концевые фрезы

В отличие от насадных фрез у концевых нет посадочного от­верстия, а есть

хвостовик, которым они закрепляются на шпин­деле станка. Хвостовики бывают

цилиндрические, конусные или резьбовые. Фрезы закрепляют в конусном или

резьбовом гнезде шпинделя, патроне или цанге. В зависимости от формы

поверхно­сти, описываемой режущими кромками при вращении инструмента, фрезы

подразделяют на цилиндрические и фасонные.

Концевые фрезы применяют для выборки гнезд и пазов, обра­ботки деталей по

контуру, фасонной обработки боковых поверхно­стей деталей, снятия свесов у

щитов, облицованных различными материалами, объемного копирования и т. п. В

отличие от насад­ных концевые фрезы имеют небольшой диаметр (практически от 3

до 60 мм). В связи с этим для обеспечения необходимых скоростей резания

концевые фрезы работают при частоте вращения 9000- 24000 мин- 1 . При

таких частотах вращения и сравнительно не­больших скоростях подачи (5-10 м/мин)

подача на один зуб (при 2=1... 2) незначительна, что обеспечивает высокое

качество об­работки.

Концевые фрезы изготавливают в основном цельными, но суще­ствуют конструкции

и сборных концевых фрез. При выборке про­дольных пазов, фрезеровании

четверти, обработке внутренних кон­туров деталей (для заглубления) концевые

фрезы кроме боковых режущих кромок должны иметь и торцовые режущие кромки.

В зависимости от оформления задних поверхностей зубьев конце­вые фрезы

разделяются на затылованные, незатылованные и с остроконечными зубьями.

Сведения о затылованных фрезах и фрезах с остроконечными зубьями приведены

выше. Под незатылованными здесь понимаются фрезы, у которых задняя

поверхность для любой точки боковой режущей кромки оформлена по дуге

окруж­ностей из центра фрезы. Для создания необходимых углов резания

незатылованные фрезы устанавливают в эксцентриковый зажим­ной патрон. По мере

переточек уменьшается масса инструмента, поэтому незатылованные концевые

фрезы необходимо периодиче­ски балансировать вместе с патроном. Балансируют

их также и при изменении установочных углов в патроне.

Цельные концевые фрезы могут быть изготовлены целиком из легированной или

быстрорежущей стали с припаянными пластин­ками из твердого сплава, монолитными

(целиком из твердого спла­ва), в виде монолитной рабочей части из твердого

сплава и напаян­ным хвостовиком из конструкционной стали. Фрезы концевые

ци­линдрические из легированной стали марок Х6ВФ и 8Х4В4Ф1 (Р4) изготавливают

трех типов (рис. 10): незатылованные для фрезерования по контуру (а);

затылованные для фрезерования по контуру (б); для выборки гнезд (в).

Фрезы типов -а и б- однорезцовые, типа в - двухрезцовые. Диаметр

фрез типа а 3- 20 мм с градацией через 1 мм до диаметра 8 мм и через 2

им­евшие 8 мм. Диаметр фрез типов б и в. 5; 6; 8; 10; 12; 16; 20 и 25 мм. Для

уменьшения" трения торцовых кромок о древесину при выборке пазов и гнезд дается

поднутрение к центру фрезы под углом 2...3 0 . Задний угол торцевых

кромок 20-25°. Угловые параметры для боковых режущих кромок следующие: а=10

15°; у = 30;..35°.

Для фрезерования различных древесных материалов (ДСтП,

ДВП, пластики и др.) следует применять концевые фрезы, осна- щенные

пластинками твердого сплава. На рис. 10, г показана одно-резцовая

незатылованная фреза, корпус которой изготовлен из стали 40Х или стали 45, а

пластинка - из твердого сплава ВК15. Диаметр таких фрез 8-18 мм с градацией

через 2 мм, диаметр посадочной шейки 8 и 10 мм, длина 55-70 мм. Эти фрезы

изго­тавливают Сестрорецкий и Томский инструментальные заводы.


Похожая информация.


ООО «СДТ» занимается производством фрез на заказ. У нас Вы можете приобрести инструмент различных типов и назначения как для работы по дереву, так и для металлообработки. Технологический парк нашего предприятия состоит из современного, высокоточного оборудования, благодаря которому обеспечивается высокое качество продукции и ее соответствие жестким требованиям заказчиков. Также мы применяем только специализированные марки сталей, предназначенные для режущего инструмента. Узнать цены на изготовление фрез и условия поставки Вы можете у менеджеров нашей компании по телефону, через e-mail или скайп. Возможна доставка по Москве и в регионы России.

Выполним заказ на любой инструмент!

Производство фрез по дереву: виды инструмента

ООО «СДТ» может изготовить на заказ любые типы фрез, в том числе:

  • цилиндрические. Они применяются для обработки плоских поверхностей на горизонтально-фрезерных станках. Могут иметь прямые или винтовые зубья. Изготавливаются из быстрорежущих сталей и могут оснащаться твердосплавными пластинами;
  • торцовые. Изготовление фрез данного типа требуется при обработке плоскостей на вертикально-фрезерном оборудовании. Торцовый инструмент отличается большой производительностью и плавностью работы при небольших значениях припуска;
  • дисковые. Они предназначены для создания пазов и канавок. Данный инструмент используется при работах как по дереву, так и по металлу;
  • угловые. Применяются при фрезеровании наклонных плоскостей и угловых пазов. Данная разновидность широко востребована в инструментальном производстве для обработки стружечных канавок;
  • концевые. Изготовление фрез этого типа необходимо для создания глубоких пазов, контурных выемок и уступов. Как правило, они выполняются с винтовыми или наклонными зубьями.

Производство фрез на заказ должно обеспечивать инструменту соответствие большому количеству требований. Среди них:

  • создание условий свободного размещения и удаления стружки;
  • высокая прочность зуба и хороший теплоотвод;
  • отсутствие острых углов и резких переходов впадины, которые могут повлечь концентрацию напряжений и возникновение трещин при термообработке;
  • наибольшая долговечность фрезы с учетом оптимального количества переточек.

Изготовим любые фрезы по вашим чертежам!

Производство фрез по дереву от ООО «СДТ» отвечает всем необходимым стандартам качества. Наши инструменты обеспечат высокую эффективность и надежность работы Вашего оборудования.

Читайте также: