Поверхностный слой жидкости. Поверхностная энергия жидкости Поверхностное натяжение. Энергия поверхностного слоя жидкости

ОПРЕДЕЛЕНИЕ

Поверхностное натяжение - стремление жидкости сократить свою свободную поверхность, т.е. уменьшить избыток своей потенциальной энергии на границе раздела с газообразной фазой.

Опишем механизм возникновения поверхностного натяжения в жидкостях. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Рассмотрим две молекулы A и B. Молекула A находится внутри жидкости, молекула B - на ее поверхности (рис. 1). Молекула A окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу A со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или, другими словами, их равнодействующая равна нулю. Молекула B с одной стороны окружена молекулами жидкости, а с другой стороны - молекулами газа, концентрация которых значительно ниже, чем концентрация молекул жидкости. Так как со стороны жидкости на молекулу B действует гораздо больше молекул, чем со стороны газа, равнодействующая всех межмолекулярных сил уже не будет равна нулю и будет направлена внутрь объема жидкости. Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил. А это означает, что молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией, которая называется поверхностной энергией .

Очевидно, чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

где поверхностная энергия жидкости, площадь свободной поверхности жидкости и коэффициент пропорциональности, который называется коэффициентом поверхностного натяжения.

Коэффициент поверхностного натяжения

ОПРЕДЕЛЕНИЕ

Коэффициент поверхностного натяжения - это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости:

Единицей измерения коэффициента поверхностного натяжения в системе СИ является .

Коэффициент поверхностного натяжения жидкости зависит: 1) от природы жидкости (у «летучих жидкостей таких, как эфир, спирт, бензин, коэффициент поверхностного натяжения меньше, чем у «нелетучих - воды, ртути); 2) от температуры жидкости (чем выше температура, тем меньше поверхностное натяжение); 3) от свойств газа, который граничит с данной жидкостью; 4) от наличия поверхностно-активных веществ таких, как мыло или стиральный порошок, которые уменьшают поверхностное натяжение. Также следует отметить, что коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости .

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Вследствие поверхностного натяжения жидкость всегда принимает форму с минимальной поверхностью. Если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать форму сферы, как, например, капля воды, мыльный пузырь. Также будет вести себя вода в невесомости. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называютсясилами поверхностного натяжения .

Поэтому коэффициент поверхностного натяжения можно также определить как модуль силы поверхностного натяжения, действующей на единицу длины контура, ограничивающего свободную поверхность жидкости:

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т.е. от того, как пленка деформирована), а силы поверхностного натяженияне зависятот площади поверхности жидкости. Если положить швейную иглу на поверхность воды, поверхность прогнется и не даст ей утонуть. Действием сил поверхностного натяжения можно объяснить скольжение легких насекомых таких, например, как водомерки, по поверхности водоемов (рис.2). Лапка водомерки деформирует водную поверхность, увеличивая тем самым ее площадь. Вследствие этого возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, компенсируя при этом силу тяжести.

На действии сил поверхностного натяжения основан принцип действия пипетки (рис.3). Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться. При нажатии на резиновый колпачок пипетки, создается дополнительное давление, которое помогает силе тяжести, в результате чего капля падает вниз.

Примеры решения задач

ПРИМЕР 1

Задание Тонкое алюминиевое кольцо радиусом 7,8 см соприкасается с мыльным раствором. Каким усилием можно оторвать кольцо от раствора? Температуру раствора считать комнатной. Масса кольца 7 г.
Решение Выполним рисунок.

На кольцо действуют следующие силы: сила тяжести , сила поверхностного натяжения и внешняя сила .

Так как кольцо соприкасается с раствором и внешней и внутренней сторонами, то сила поверхностного натяжения равна:

Длина контура, ограничивающего поверхность жидкости в данном случае равна длине окружности кольца:

С учетом последнего сила поверхностного натяжения:

Условие отрыва кольца от поверхности раствора имеет вид:

Из таблиц коэффициент поверхностного натяжения мыльного раствора при комнатной температуре .

Ускорение свободного падения

Переведем единицы в систему СИ: радиус кольца масса кольца кг.

Вычислим:

Ответ Для того, чтобы оторвать кольцо от раствора. необходимо приложить силу 0,11 Н.

ПРИМЕР 2

Задание Какое количество энергии освобождается при слиянии мелких водяных капель радиусом мм в одну каплю радиусом 2 мм?
Решение Изменение потенциальной энергии поверхностного слоя капель, обусловленное уменьшением площади поверхности капель при их слиянии в одну каплю равно:

где площадь поверхности всех мелких капель, площадь поверхности большой капли, коэффициент поверхностного натяжения воды.

Очевидно, что:

где r — радиус маленькой капли, R — радиус большой капли, n — количество маленьких капель.

Масса маленькой капли:

масса большой капли:

Так как маленькие капли сливаются в одну большую каплю, можно записать:

откуда количество маленьких капель:

а площадь поверхности всех маленьких капель:

Теперь найдем количество энергии, которое освобождается при слиянии капель:

Из таблиц коэффициент поверхностного натяжения воды .

Переведем единицы в систему СИ: радиус маленькой капли радиус большой капли .

Вычислим:

Ответ При слиянии капель освобождается энергия Дж.

ПРИМЕР 3

Задание Определить коэффициент поверхностного натяжения масла, плотность которого равна , если при пропускании через пипетку масла получено 304 капли. Диаметр шейки пипетки 1,2 мм.
Решение Капля масла отрывается от пипетки, когда сила тяжести равна силе поверхностного натяжения:

Суммарная энергия частиц жидкости складывается из энергии их хаотического (теплового) движения и потенциальной энергии, обусловленной силами межмолекуляр­ного взаимодействия. Для перемещения молекулы из глубины жидкости в поверхност­ный слой надо затратить работу. Эта работа совершается за счет кинетической энергии молекул и идет на увеличение их потенциальной энергии. Поэтому молекулы поверхностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, которой обладают молекулы в поверхностном слое жидкости, называемая поверхностной энергией, пропорциональна площади слоя DS :

где s - поверхностное натяжение.

Так как равновесное состояние характеризуется минимумом потенциальной энер­гии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т. е. форму шара. Наблю­дая мельчайшие капельки, взвешенные в воздухе, можем видеть, что они действительно имеют форму шариков, но несколько искаженную из-за действия сил земного тяготения.

Итак, условием устойчивого равновесия жидкости является минимум поверхност­ной энергии. Это означает, что жидкость при заданном объеме должна иметь наимень­шую площадь поверхности, т. е. жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растяну­той упругой пленке, в которой действуют силы натяжения.

Под действием сил поверхностного натяжения (направлены по касательной к поверх­ности жидкости и перпендикулярно участку контура, на который они действуют) поверхность жидкости сократилась и рассматриваемый контур переместился в положение, отмеченное светло-серым цветом. Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу

где f - сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.

Из рис. 97 видно, что DlDx = DS , т. е.

Эта работа совершается за счет уменьшения поверхностной энергии, т. е.

Из сравнения выражений (66.1) - (66.3) видно, что

т. е. поверхностное натяжение s равно силе поверхностного натяжения, приходящейся на единицу длины контура, ограничивающего поверхность. Единица поверхностного натяжения - ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м 2) (см. (66.4) и (бб.1)). Большинство жидкостей при температуре 300 К имеет поверхностное натяжение порядка 10 –2 -10 –1 Н/м. Поверхностное натяжение с повышением тем­пературы уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.

Поверхностное натяжение существенным образом зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются пoвеpxностно-активными . Наиболее известным поверхностно-активным веществом по отношению х воде является мыло. Оно сильно уменьшает ее поверхностное натяжение (примерно с 7,5 10 –2 до 4,5 10 –2 Н/м). Поверхностно-активными веществами, пони­жающими поверхностное натяжение воды, являются также спирты, эфиры, нефть и др.

Существуют вещества (сахар, соль), которые увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой. Например, если посолить мыльный раствор, то в поверхностный слой жидкости выталкивается молекул мыла больше, чем в пресной воде.

Наиболее характерным свойством жидкости, отличающим ее от газа, является то, что на границе с газом жидкость образует свободную поверхность, наличие которой приводит к возникновению явлений особого рода, называемых поверхностными. Своим возникновением они обязаны особым физическим условиям, в которых находятся молекулы вблизи свободной поверхности.

На каждую молекулу жидкости действуют силы притяжения со стороны окружающих ее молекул, расположенных от нее на расстоянии порядка 10 -9 м (радиус молекулярного действия). На молекулу M 1 , расположенную внутри жидкости (рис. 1), действуют силы со стороны таких же молекул, и равнодействующая этих сил близка к нулю.

Для молекул M 2 равнодействующие сил отличны от нуля и направлены внутрь жидкости, перпендикулярно к ее поверхности. Таким образом, все молекулы жидкости, находящиеся в поверхностном слое, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость (молекулярное давление) .

Чтобы переместить молекулу M 3 , расположенную непосредственно под поверхностным слоем, на поверхность, необходимо совершить работу против сил молекулярного давления. Следовательно, молекулы поверхностного слоя жидкости обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эту энергию называют поверхностной энергией .

Очевидно, что величина поверхностной энергии тем больше, чем больше площадь свободной поверхности.

Пусть площадь свободной поверхности изменилась на ΔS , при этом поверхностная энергия изменилась на \(~\Delta W_p = \alpha \Delta S\), где α - коэффициент поверхностного натяжения.

Так как для этого изменения необходимо совершить работу

\(~A = \Delta W_p ,\) то \(~A = \alpha \cdot \Delta S .\)

Отсюда \(~\alpha = \frac{A}{\Delta S}\) .

Единицей коэффициента поверхностного натяжения в СИ является джоуль на квадратный метр (Дж/м 2).

Коэффициент поверхностного натяжения - величина, численно равная работе, совершенной молекулярными силами при изменении площади свободной поверхности жидкости на единицу при изотермическом процессе.

Так как любая система, предоставленная сама себе, стремится занять такое положение, в котором ее потенциальная энергия наименьшая, то жидкость обнаруживает стремление к сокращению свободной поверхности.

Поверхностный слой жидкости ведет себя подобно растянутой резиновой пленке, т.е. все время стремится сократить площадь своей поверхности до минимальных размеров, возможных при данном объеме.

Пример : капля жидкости в состоянии невесомости имеет сферическую форму.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 178-179.

Молекулы в жидкости обладают кинетической энергией теплового движения и потенциальной энергией межмолекулярного взаимодействия. Для перемещения молекулы из глубины жидкости к поверхности надо совершить работу по преодолению силы молекулярного давления. Эта работа совершается молекулой за счет запаса кинетической энергии и идет на увеличение ее потенциальной энергии. Поэтому молекулы поверхностного слоя обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эта дополнительная потенциальная энергия, которой обладают молекулы поверхностного слоя, называется поверхностной энергией .

Если поверхность жидкости растянуть, то на поверхность будут выходить все новые молекулы, и потенциальная энергия поверхностного слоя будет увеличиваться. Следовательно, поверхностная энергия пропорциональна площади самой поверхности жидкости (рис.4).

где А – работа силы поверхностного натяжения; F – сила поверхностного натяжения; Dx – растяжение пленки; DS – изменение площади поверхности пленки.

Из этого выражения можно дать еще одно определение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения равен свободной поверхностной энергии, приходящейся на единицу площади поверхности. В этом случае единица измерения [a]=[Дж/м 2 ].

Большое влияние на поверхностное натяжение оказывают находящиеся в жидкости примеси. Например, мыло, растворенное в воде, уменьшает коэффициент поверхностного натяжения до 0,045 Н/м, а сахар или соль повышают. Изменяющие поверхностное натяжение вещества называют поверхностно – активными . К ним можно отнести нефть, мыло, спирт.. Это явление объясняется межмолекулярным взаимодействием между молекулами. Если взаимодействие между молекулами самой жидкости больше, чем между молекулами жидкости и примеси, то молекулы примеси выталкиваются на поверхность и концентрация примеси на поверхности оказывается больше; чем в объеме, что и приводит к уменьшению поверхностного натяжения.

Поверхностно–активные вещества широко применяют при резке металлов, бурении горных пород, и т.д., так как разрушение горных пород в их присутствии происходит легче, адсорбируясь на поверхности твердого тела, они проникают внутрь микротрещин и способствуют дальнейшему развитию этих трещин вглубь.

Описание установки и выполнение работы

В данной работе определяют коэффициент поверхностного натяжения методом отрыва кольца от поверхности, смачивающей ее жидкости.

Лабораторная установка (рис.5) представляет собой торсионные весы, к которым подвешено тонкое кольцо. Под кольцом расположен сосуд с исследуемой жидкостью. Кольцо с известными размерами опускают в исследуемую жидкость.

Поворачивая рычаг весов, отрывают кольцо из жидкости. В момент отрыва рычаг весов останавливают и измеряют силу отрыва кольца, которая по сути является силой разрыва поверхностной пленки. Разрыв происходит по двум линиям: по внешнему диаметру и внутреннему. Поэтому, суммарная линия отрыва будет равна

Поскольку проще замерять внешний диаметр и толщину то d 2 =d 1 –2h

Тогда коэффициент поверхностного натяжения будет равен

F , H d 1, м h , м a, H/м Da, H/м
Среднее значение

Задачи

1. При определении силы поверхностного натяжения капельным методом число капель глицерина, вытекающего из капилляра, составляет n =50. Общая масса глицерина m =1 кг, а диаметр шейки капли в момент отрыва d =1 мм. Определите коэффициент поверхностного натяжения глицерина.

Ответы: 1) 72,3 мН/м; 2) 52 мН/м; 3) 62,3 мН/м; 4) 62,5 мН/м; 5) 43,4 мН/м;

2. Тонкое кольцо радиусом 7,8 см соприкасается с мыльным раствором. Каким усилием можно оторвать кольцо от раствора? Температуру раствора считать комнатной. Масса кольца 7 г.

Ответы: 1) 1,32 Н; 2) 0,11 Н; 3) 0,42 Н; 4) 0,33 Н; 5) 0,25 Н.

3. Какую массу имеет капля воды, вытекающая из стеклянной трубки диаметром 1 мм? Считать диаметр капли равным диаметру шейки трубки.

Ответы: 1) 2,25 . 10 –5 кг; 2) 7,2 . 10 –4 кг; 3) 8,3 . 10 –3 кг; 4) 3,5 . 10 –5 кг; 5) 4,2 . 10 –5 кг.

4. Какую энергию необходимо затратить на образование поверхности мыльного пузыря радиусом 6 см при постоянной температуре?

Ответы: 1) 2,8 . 10 –3 Дж; 2) 0,77 . 10 –2 Дж; 3) 3,6 . 10 –3 Дж; 4) 0,92 . 10 –3 Дж; 5) 7 . 10 –3 Дж.

5. При измерении коэффициента поверхностного натяжения мыльного раствора при 15 0 С использовали динамометр и проволочное кольцо диаметром 12 см и массой 20 г. При отрыве кольца от поверхности жидкости динамометр показал усилие 0,227 Н. Какой коэффициент поверхностного натяжения получен в результате опыта?

Ответы: 1) 0,047 Н/м; 2) 0,04 Н/м; 3) 0,053 Н/м; 4) 0,072 Н/м; 5) 0,080 Н/м.

6. Капилляр с внутренним радиусом 2 мм опущен в жидкость. Найти коэффициент поверхностного натяжения жидкости, поднявшейся в капилляре, если ее масса равна 9 . 10 –5 кг.

Ответы: 1) 22 . 10 –3 Н/м; 2) 62 . 10 –3 Н/м; 3) 70 . 10 –3 Н/м; 4) 40 . 10 –3 Н/м; 5) 73 . 10 –3 Н/м.

Контрольные вопросы

1. Что представляют собой жидкости, твердые и газообразные вещества?

2. Чем обусловлено внутреннее давление в жидкости?

3. Как возникает сила поверхностного натяжения? Куда она направлена?

4. Физический смысл коэффициента поверхностного натяжения.

5. Почему поверхностный слой обладает избыточной энергией?

6. Вывод рабочей формулы.

7. Поверхностно-активные вещества.

8. Зависит ли поверхностное натяжение от температуры жидкости и как?

9. Имеют ли газы поверхностное натяжение?

Литература

4. Савельев И. В. Курс общей физики, т. 1. М.: Наука, 1989. с.331–337.

5. Трофимовa Т. И. Курс физики. М.: Высшая школа, 2002, с.128–130.


Лабораторная работа 1.15

На поверхности жидкости, вблизи границы, разделяющей жидкость и ее пар, взаимодействие между молекулами жидкости отличается от взаимодействия молекул внутри объема жидкости. Для иллюстрации этого утверждения рассмотрим рис. 20 . Молекула 1, окруженная со всех сторон другими молекулами той же жидкости испытывает в среднем одинаковые силы притяжения ко всем своим соседям. Равнодействующая этих сил близка к нулю. Молекула 2 испытывает меньшее притяжение вверх со стороны молекул пара и большее притяжение вниз со стороны молекул жидкости. В результате на молекулы, расположенные в поверхностном слое действует направленная вниз в глубь жидкости равнодействующая R сил, которую принято относить к единице площади поверхностного слоя.

Для перенесения молекул из глубины жидкости в ее поверхностный слой необходимо совершить работу по преодолению силы R . Эта работа идет на увеличение поверхностной энергии , т.е. избыточной потенциальной энергии, которой обладают молекулы в поверхностном слое по сравнению с их потенциальной энергией внутри остального объема жидкости.

Обозначим потенциальную энергию одной молекулы в поверхностном слое, - потенциальную энергию молекулы в объеме жидкости, число молекул в поверхностном слое жидкости. Тогда поверхностная энергия равна

Коэффициентом поверхностного натяжения (или просто поверхностным натяжением ) жидкости называют изменение поверхностной энергии при изотермическом увеличении площади поверхности на одну единицу:

,

где – число молекул на единице площади поверхности жидкости.

Если поверхность жидкости ограничена периметром смачивания (см. 4.3), то коэффициент поверхностного натяжения численно равен силе, действующей на единицу длины периметра смачивания и направленной перпендикулярно к этому периметру:

где – длина периметра смачивания, сила поверхностного натяжения, действующая на длине периметра смачивания. Сила поверхностного натяжения лежит в плоскости, касательной к поверхности жидкости.

Сокращение площади поверхности жидкости уменьшает поверхностную энергию. Условием устойчивого равновесия жидкости, как и любого тела, является минимум потенциальной поверхностной энергии. Это значит, что в отсутствие внешних сил жидкость должна иметь при заданном объеме наименьшую площадь поверхности. Такой поверхностью является сферическая поверхность.

Для уменьшения поверхностного натяжения жидкости к ней добавляют специальные примеси (поверхностно-активные вещества), которые располагаются на поверхности и уменьшают поверхностную энергию. К ним относятся мыло и другие моющие средства, жирные кислоты и т.п.



Смачивание и несмачивание

На границе соприкосновения жидкостей с твердыми телами наблюдаются явления смачивания , состоящие в искривлении свободной поверхности жидкости около твердой стенки сосуда. Поверхность жидкости, искривленная на границе с твердым телом, называется мениском. Линия, по которой мениск пересекается с твердым телом, называется периметром смачивания.

Явление смачивания характеризуется краевым углом q между поверхностью твердого тела и мениском в точках их пересечения, т.е. в точках периметра смачивания. Жидкость называется смачивающей твердое тело, если краевой угол острый 0£qне смачивающих твердое тело, краевой угол тупой: p¤2смачивание и несмачивание отсутствует.

Различие краевых углов в явлениях смачивания и несмачивания объясняется соотношением сил притяжения между молекулами твердых тел и жидкостей и сил межмолекулярного притяжения в жидкостях. Если силы притяжения между молекулами твердого тела и жидкости больше, чем силы притяжения молекул жидкости друг к другу, то жидкость будет смачивающей. Если молекулярное притяжение в жидкости превышает силы притяжения молекул жидкости к молекулам твердого тела, то жидкость не смачивает твердое тело.

Искривление поверхности жидкости создает дополнительное (избыточное) давление на жидкость по сравнению с давлением под плоской поверхностью (Лапласово давление). Для сферической поверхности жидкости это давление выражается формулой:



,

где s - коэффициент поверхностного натяжения, – радиус сферической поверхности; > 0, если мениск выпуклый; < 0, если мениск вогнутый (рис. 23). При выпуклом мениске увеличивает то давление, которое существует под плоской поверхностью жидкости (например, атмосферное давление на свободную поверхность жидкости). При вогнутом мениске давление под плоской поверхностью уменьшается на величину (рис. 24). Дополнительное давление внутри сферического пузыря радиуса R вызывается избыточным давлением на обеих поверхностях пузыря и равно = 4s ¤ R .

Капиллярные явления

Узкие цилиндрические трубки малого диаметра (< 1 мм) называются капиллярами .

Если опустить такой капилляр в несмачивающую жидкость, то под действием Лапласова давления ее уровень в капилляре понизится по сравнению с уровнем в сообщающемся с ним широком сосуде (рис. 25).

Если капилляр опустить в смачивающую жидкость, то ее уровень в капилляре по той же причине повысится (рис. 26). В случае идеального смачивания , а при идеальном несмачивании . Тогда из условия равновесия жидкости можно найти высоту подъема (или опускания) жидкости в капилляре:

Здесь - плотность жидкости, – ускорение силы тяжести, – радиус капилляра. Изменения высоты уровня жидкости в капиллярах называются капиллярными явлениями. Этими явлениями объясняется гигроскопичность, т.е. способность впитывать влагу, ряда тел (вата, ткани, почвы, бетон).


Литература

1. Трофимова Т.И. Курс физики. - М.: Высш. школа, 2001.

2. Савельев И.В. Курс общей физики. Механика. Молекулярная физика.
– СПб.: Лань, 2006.

3. Сивухин Д.В. Общий курс физики. Молекулярная физика и термодинамика. - М.: Физматлит, 2005.

4. Детлаф А.А., Яворский Б.М. Курс физики. - М.: Высш. школа, 2001.

5. Федосеев В.Б. Физика: учебник. – Ростов н/Д: Феникс, 2009.


Введение. Предмет и задачи молекулярной физики и термодинамики…………………….3

1. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНЫХ ГАЗОВ……………4

1.1. Основные положения молекулярно-кинетической теории………..4

1.2. Масса и размеры молекул. Количество вещества…………………... 5

1.3. Законы идеального газа ………………………………………………..……….7

1.4. Уравнение состояния идеального газа ……………………………….…10

1.5. Основное уравнение МКТ идеальных газов …………………….…….12

1.6. Закон Максвелла о распределении молекул по скоростям.…...15

1.7. Распределение Больцмана ……………………………………………………18

1.8. Средняя длина свободного пробега молекул. Явления переноса………………………………………………………………………………20

2. ОСНОВЫ ТЕРМОДИНАМИКИ…………………………………………………………….23

2. 1. Внутренняя энергия системы Степени свободы молекул ………….23

2. 2. Первое начало термодинамики. Удельная и молярная теплоемкости.…………………………………………………………………………….26

2.3. Работа газа по перемещению поршня. Теплоемкость при постоянных объеме и давлении ……………………………………………………..27

2.4. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс. Политропный процесс …………………………………..29

2.5. Круговой процесс. Обратимые и необратимые процессы………….31

2.6. Энтропия………………………………………………………………………………….33

2.7. Второе и третье начала термодинамики……………………………………..37

2.8. Тепловые двигатели и холодильные машины..………………………….38

3. РЕАЛЬНЫЕ ГАЗЫ …………………………………………………………………………….41

3.1. Уравнение Ван-дер-Ваальса …………………………………………………….41

3.2. Внутренняя энергия реального газа………………………………………….42

4. Свойства жидкостей.……………………………………………………………………...44

4.1. Особенности жидкого состояния вещества

4.2. Энергия поверхностного слоя и поверхностное натяжение жидкостей………………………………………………………………………………………45

4.3. 3 Смачивание и несмачивание………………………………………………….47

4.4. Капиллярные явления………………………………………………………………49

Литература…………………………………………………………………………………………51

Читайте также: