Условие равновесия материальной точки. Статика. Равновесие механической системы (абсолютно твердого тела). III. Применение знаний об устойчивости тел

Статика — это раздел механики, изучающий равновесие тел. Статика позволяет определить условия равновесия тел и отвечает на некоторые вопросы, которые касаются движения тел, например, дает ответ, в каком направлении возникает движение, если равновесие нарушено. Стоит оглянуться вокруг и можно заметить, что большинство тел находятся в равновесии – они либо движутся с постоянной скоростью, либо покоятся. Этот вывод можно сделать из законов Ньютона.

Примером может служить сам человек, картина, висящая на стене, подъёмные краны, различные постройки: мосты, арки, башни, здания. Тела вокруг нас подвергаются воздействию каких-либо сил. На тела действует разное количество сил, но если будем находить результирующую силу, для тела, находящегося в равновесии, она будет равна нулю.
Различают:

  • статическое равновесие – тело покоится;
  • динамическое равновесие – тело движется с постоянной скоростью.

Статическое равновесие. Если на тело действуют силы F1, F2, F3, и так далее, то основным требованием существования состояния равновесия является (равновесие). Это векторное уравнение в трехмерном пространстве, и представляет три отдельных уравнения, по одному для каждого направлению пространства. .

Приложенные к телу проекции всех сил на любое направление, должны компенсироваться, то есть алгебраическая сумма проекций всех сил на любое направление должна быть равна 0.

При нахождении равнодействующей силы можно перенести все силы и расположить точку их приложения в центр масс. Центр масс – точка, которая вводится для характеристики движения тела или системы частиц, как целого, характеризует распределение масс в теле.

На практике мы очень часто встречаем случаи и поступательного, и вращательного движения одновременно: скатывание бочки по наклонной плоскости, танцующая пара. При таком движении одного условия равновесия недостаточно.

Необходимое условие равновесия в этом случае будет:

На практике и в жизни большую роль играет устойчивость тел , характеризующая равновесие.

Различают виды равновесия:

  • Устойчивое равновесие;
  • Неустойчивое равновесие;
  • Безразличное равновесие.

Устойчивое равновесие – это равновесие, когда при малом отклонении от положения равновесия возникает сила, возвращающая его в состояние равновесия (маятник остановившихся часов, теннисный шарик, закатившийся в ямку, Ванька-встанька или неваляшка, белье на веревке находятся в состоянии устойчивого равновесия).

Неустойчивое равновесие – это состояние, когда тело после выведения из положения равновесия отклоняется из-за возникающей силы еще больше от положения равновесия (теннисный шарик на выпуклой поверхности).

Безразличное равновесие – будучи предоставленным, самому себе тело не меняет своего положения после выведения из состояния равновесия (теннисный шарик, лежащий на столе, картина на стене, ножницы, линейка, подвешенные на гвоздик находятся в состоянии безразличного равновесия). Ось вращения и центр тяжести совпадают.

Для двух тел, то тело будет более устойчиво, которое обладает большей площадью опоры.

Если тело неподвижно, то это тело находится в равновесии. Многие тела покоятся, несмотря на то, что на них действуют силы со стороны других тел. Это различные строения, камни, машины, части механизмов, мосты и многие другие тела. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники.
Все реальные тела под воздействием приложенных к ним сил со стороны других тел изменяют свою форму и размеры, то есть деформируются. Величина деформации зависит от многих факторов: материала тела, его формы, приложенных к нему сил. Деформации могут быть настолько малыми, что обнаружить их можно только при помощи специальных приборов.
Деформации могут быть большими, и тогда их легко заметить, например, растяжение пружины или резинового шнура, изгиб деревянной доски или тонкой металлической линейки.
Иногда действия сил вызывают значительные деформации тела, в этом случае, фактически после приложения сил, мы будем иметь дело с телом, которое имеет совершенно новые геометрические размеры и форму. Также необходимо будет определить условия равновесия этого нового деформированного тела. Подобные задачи, связанные с расчетом деформаций тел, как правило, очень сложны.
Довольно часто в реальных жизненных ситуациях деформации очень невелики, а тело при этом остается в равновесии. В таких случаях деформациями можно пренебречь и рассматривать ситуацию так, как если бы тела были недеформируемыми, т. е. абсолютно твердыми. Абсолютно твердое тело в механике - это такая модель реального тела, у которой расстояние между частицами не изменяется, каким бы воздействиям данное тело не подвергалось. Следует понимать, что абсолютно твердых тел в природе не существует, но в некоторых случаях мы можем считать реальное тело абсолютно твердым.
Например, железобетонную плиту перекрытия дома можно считать абсолютно твердым телом в том случае, когда на ней стоит очень тяжелый шкаф. Сила тяжести шкафа действует на плиту, и плита прогибается, но эта деформация будет столь мала, что обнаружить ее можно только с помощью точных приборов. Поэтому в данной ситуации мы можем пренебречь деформацией и считать плиту абсолютно твердым телом.
Выяснив условия равновесия абсолютно твердого тела, мы узнаем условия равновесия реальных тел в тех ситуациях, когда их деформациями можно пренебречь.
Статика - раздел механики, в котором изучаются условия равновесия абсолютно твердых тел.
В статике учитываются размеры и форма тел, а все рассматриваемые тела считаются абсолютно твердыми. Статику можно рассматривать как частный случай динамики, так как неподвижность тел, когда на них действуют силы, есть частный случай движения с нулевой скоростью.
Деформации, происходящие в теле, изучаются в прикладных разделах механики (теория упругости, сопротивление материалов). В дальнейшем для краткости абсолютно твердое тело будем называть твердым телом, или просто телом.
Выясним условия равновесия любого тела. Для этого используем законы Ньютона. Чтобы упростить себе задачу, разобьем мысленно все тело на большое число небольших частей, каждый из которых можно рассматривать как материальную точку. Все тело состоит из множества элементов, некоторые из них изображены на рисунке. Силы, которые действуют на данное тело со стороны других тел - это внешние силы. Внутренние силы - это силы, с которыми элементы действуют друг на друга. Сила F1,2 - это сила, действующая на элемент 1 со стороны элемента 2. Сила F2,1 приложена к элементу 2 элементом 1. Это внутренние силы; к ним относятся также силы F1,3 и F3,1, F2,3 и F3,2.
Силы F1, F2, F3 - это геометрическая сумма всех внешних сил, действующих на элементы 1, 2, 3. Силы F1 штрих, F2 штрих, F3 штрих - это геометрическая сумма внутренних сил, приложенных к элементам 1, 2, 3.
Ускорение каждого элемента тела равно нулю, потому что тело покоится. Значит, по второму закону Ньютона равна нулю и геометрическая сумма всех внутренних и внешних сил, действующих на элемент.
Для равновесия тела необходимо и достаточно, чтобы геометрическая сумма всех внешних и внутренних сил, действующих на каждый элемент этого тела, была равна нулю.
Каким условиям должны удовлетворять внешние силы, действующие на твердое тело, чтобы оно находилось в покое? Для этого сложим уравнения. Равенство получается ноль.
В первых скобках этого равенства записана векторная сумма всех внешних сил, действующих на тело, а во вторых скобках - векторная сумма всех внутренних сил, приложенных к элементам этого тела. Мы уже выяснили, используя третий закон Ньютона, что векторная сумма всех внутренних сил системы равна нулю, потому что любой внутренней силе соответствует сила равная ей по модулю и противоположная по направлению.
Следовательно, в полученном равенстве остается исключительно геометрическая сумма внешних сил, которые оказывают действие на тело.
Это равенство является обязательным условием для равновесия материальной точки. Если мы применяем его к твердому телу, то это равенство называют первым условием его равновесия.
В том случае, если твердое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.
Учитывая тот факт, что к одним элементам тела может быть приложено сразу несколько внешних сил, а на другие элементы внешние силы могут вообще не действовать, то число всех внешних сил совершенно необязательно должно быть равно числу всех элементов.
Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности для проекций внешних сил на ось ОХ можно записать, что сумма проекций на ось ОХ внешних сил равна нулю. Аналогичным способом может быть записано уравнение для проекций сил на оси ОY и OZ.
На основе условия равновесия любого элемента тела выведено первое условие равновесия твердого тела.

Статический расчет инженерных сооружений во многих случаях сводится к рассмотрению условий равновесия конструкции из систе­мы тел, соединенных, какими-нибудь связями. Связи, соединяющие части данной конструкции, будем называть внутренними в отличие от внешних связей, скрепляющих кон­струкцию с телами, в неё не входя­щими (например, с опорами).

Если после отбрасывания внешних связей (опор) конструкция остается жесткой, то для нее задачи статики решаются как для абсолютно твердо­го тела. Однако могут встречаться такие инженерные конструкции, ко­торые после отбрасывания внешних связей не остаются жесткими. Примером такой конструкции является трехшарнирная арка. Если отбросить опоры А и В, то арка не будет жесткой: ее части могут поворачиваться вокруг шарнира С.

На основании принципа отвердевания система сил, действующих на такую конструкцию, должна при равновесии удовлетворять ус­ловиям равновесия твердого тела. Но эти условия, как указывалось, будучи необходимыми, не будут являться достаточными; поэтому из них нельзя определить все неизвестные величины. Для решения задачи необходимо дополнительно рассмотреть равновесие какой-нибудь одной или нескольких частей конструкции.

Например, составляя условия равновесия для сил, действующих на трехшарнирную арку, мы получим три уравнения с четырьмя неизвестными Х А, Y A , X B , Y B . Рассмотрев дополнительно условия равновесия левой (или правой) ее половины, получим еще три уравнения, содержащие два новых неизвестных Х С, Y С, на рис. 61 не показанных. Решая полученную систему шести уравнений, найдем все шесть неизвестных.

14. Частные случаи приведения пространственной системы сил

Если при приведении системы сил к динамическому винту главный момент динамы оказался равным нулю, а главный век­тор отличен от нуля, то это означает, что система сил приведена к равнодействующей, причем центральная ось является линией действия этой равнодействующей. Выясним, при каких условиях, относящихся к главному век­тору Fp и главному моменту М 0 , это может быть. Поскольку главный момент динамы М* равен составляющей главного мо­мента М 0 , направленной по главному вектору, то рассматривае­мый случай М* =О означает, что главный момент М 0 перпенди­кулярен главному вектору, т. е. / 2 = Fo*M 0 = 0. Отсюда непо­средственно вытекает, что если главный вектор F 0 не равен нулю, а второй инвариант равен нулю, Fo≠O, / 2 = F 0 *M 0 =0, (7.9)то рассматриваемая система приводится к равнодействующей.

В частности, если для какого-либо центра приведения F 0 ≠0, а М 0 = 0, то это означает, что система сил приведена к равно­действующей, проходящей через данный центр приведения; при этом условие (7.9) также будет выполнено.Обобщим приведенную в главе V теорему о моменте равно­действующей (теорему Вариньона) на случай пространственной системы сил.Если пространственная система . сил приводится к равнодейст­вующей, то момент равнодействующей относительно произвольной точки равен геометрической сумме моментов всех сил относительно той же точки. П
усть система сил имеет равнодействующуюR и точка О лежит на линии действия этой равнодействующей. Если приводить заданную систему сил к этой точке, то получим, что главный момент равен нулю.
Возьмем какой-либо другой центр приведения О1; (7.10)С
другой стороны, на основании формулы (4.14) имеемMo1=Mo+Mo1(Fo), (7.11) т.к М 0 = 0. Сравнивая выражения (7.10) и (7.11) и учиты­вая, что в данном случае F 0 = R, получаем (7.12).

Таким образом, теорема доказана.

Пусть при каком-либо выборе центра приведения Fo=О, М ≠0. Так как главный вектор не зависит от центра приведе­ния, то он равен нулю и при любом другом выборе центра при­ведения. Поэтому главный момент тоже не меняется при пере­мене центра приведения, и, следовательно, в этом случае система сил приводится к паре сил с моментом, равным M0 .

Составим теперь таблицу всех возможных случаев приведения пространственной системы сил:

Если все силы находятся в одной плоскости, например, в пло­скости Оху, то их проекции на ось г и моменты относительно осей х и у будут равны нулю. Следовательно, Fz=0; Mox=0, Moy=0. Внося эти значения в формулу (7.5), найдем, что второй инва­риант плоской системы сил равен нулю.Тот же результат мы получим и для пространственной системы параллельных сил. Действительно, пусть все силы параллельны оси z . Тогда проекции их на оси х и у и моменты относительно оси z будут равны 0. Fx=0, Fy=0, Moz=0

На основании доказанного можно утверждать, что плоская система сил и система параллельных сил не приводятся к динамическому винту.

11. Равновесие тела при наличии трения скольжения Если два тела / и // (рис. 6.1) взаимодействуют друг с другом, соприкасаясь в точке А, то всегда реакцию R A , дейст­вующую, например, со стороны тела // и приложенную к телу /, можно разложить на две составляю­щие: N.4, направленную по общей нормали к поверхности соприкасаю­щихся тел в точке Л, и Т 4 , лежащую в касательной плоскости. Составляю­щая N.4 называется нормальной реак­цией, сила Т л называется силой тре­ния скольжения - она препятствует" скольжению тела / по телу //. В со­ответствии с аксиомой 4 (3 з-он Ньютона) на тело // со стороны тела / действует равная по модулю и противоположно направленная сила реакции. Ее составляющая, перпендикулярная касательной плос­кости, называется силой нормального давления. Как было сказано выше, сила трения Т А = О, если соприкасающиеся поверхности идеально гладкие. В реальных условиях поверхности шероховаты и во многих случаях пренебречь силой трения нельзя.Для выяснения основных свойств сил трения произведем опыт по схеме, представленной на рис. 6.2, а. К телу 5, нахо­дящемуся на неподвижной плите D, присоединена перекинутая через блок С нить, свободный конец которой снабжен опорной площадкой А. Если площадку А постепенно нагружать, то с уве­личением ее общего веса будет возрастать натяжение нити S , которое стремится сдвинуть тело вправо. Однако пока общая нагрузка не слишком велика, сила трения Т будет удерживать тело В в покое. На рис. 6.2, б изображены действующие на тело В силы, причем через Р обозначена сила тяжести, а через N - нормальная реакция плиты D . Если нагрузка недостаточна для нарушения покоя, справед­ливы следующие уравнения равновесия: N - P = 0, (6.1) S-T = 0. (6.2).Отсюда следует, что N = P и T = S. Таким образом, пока тело находится в покое, сила трения остается равной силе натя­жения нити S. Обозначим через Tmax силу трения в критический момент процесса нагружения, когда тело В теряет равновесие и начинает скользить по плите D . Следовательно, если тело нахо­дится в равновесии, то T≤Tmax.Максимальная сила трения Т тах зависит от свойств материа­лов, из которых сделаны тела, их состояния (например, от харак­тера обработки поверхности), а также от величины нормального давления N. Как показывает опыт, максимальная сила трения при­ближенно пропорциональна нор­мальному давлению, т. е. имеет место равенство Tmax = fN . (6.4).Это соотношение носит название закона Амонтона - Кулона. Безразмерный коэффициент / называется коэффициентом тре­ния скольжения. Как следует из опыта, его величина в широких пределах не зависит от площади соприкасающихся поверхностей, но зависит от материала и степени шероховатости соприкасаю­щихся поверхностей. Значения коэффициентов трения устанавли­ваются опытным путем и их можно найти в справочных таблицах. Неравенство" (6.3) можно теперь записать в виде T≤fN (6,5).Случай строгого равенства в (6.5) отвечает максимальному значению силы трения. Это значит, что силу трения можно вычислять по формуле T = fN только в тех случаях, когда зара­нее известно, что имеет место критический случай. Во всех же других случаях силу трения следует определять из уравнений равновесия.Рассмотрим тело, находящееся на шероховатой поверхности. Будем считать, что в результате действия активных сил и сил реакции тело находится в предельном равновесии. На рис. 6.6, a показана предельная реакция R и ее составляющие N и Т тах (в положении, изображенном на этом рисунке, активные силы стремятся сдвинуть тело вправо, максимальная сила трения Т та х направлена влево). Угол ф между предельной реакцией R и нор­малью к поверхности называется углом трения. Найдем этот угол. Из рис. 6.6, а имеем tgφ=Tmax/N или, пользуясь выражением (6.4), tgφ= f (6-7)Из этой формулы видно, что вместо коэффициента трения можно задавать угол трения (в справочных таблицах п

риводятся обе величины).

Система сил наз.уравновешенной ,если под действием этой системы тело остается в покое.

Условия равновесия:
Первое условие равновесия твердого тела:
Для равновесия твердого тела необходимо, чтобы сумма внешних сил, приложенных к телу, была равна нулю.
Второе условие равновесия твердого тела:
При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равно нулю.
Общее условие равновесия твердого тела :
Для равновесия твердого тела должны равняться нулю сумма внешних сил и сумма моментов сил, действующих на тело. Должны быть также равны нулю начальная скорость центра масс и угловая скорость вращения тела.

Теорема. Три силы уравновешивают твёрдое тело только в том случае, когда все они лежат в одной плоскости.

11. Плоская система сил – это силы, расположенные в одной плоскости.

Три формы уравнений равновесия для плоской системы:

Центр тяжести тела.

Центром тяжести тела конечных размеров называется точка, относительно которой сумма моментов сил тяжести всех частиц тела равна нулю. В этой точке приложена сила тяжести тела. Центр тяжести тела (или системы сил) обычно совпадает с центром масс тела (или системы сил).

Центр тяжести плоской фигуры:

Практический способ нахождения центра масс плоской фигуры : подве­сим тело в поле тяжести так, чтобы оно могло свободно поворачиваться вокруг точки подвеса O1 . В равновесии центр масс С находит­ся на одной вертикали с точкой подвеса (ниже ее), так как равен нулю

момент силы тяжести, которую можно считать приложенной в центре масс. Изменяя точку подвеса, таким же способом находим еще одну прямую О 2 С , проходящую через центр масс. Положение центра масс да­ется точкой их пересечения.

Скорость центра масс:

Импульс системы частиц равен произведению массы всей системы М=Σmi на скорость ее центра масс V :

Центр масс характеризует движении системы как целого.

15. Трение скольжения – трение при относительном движении соприкасающихся тел.

Трение покоя – трение при отсутствии относительного перемещения соприкасающихся тел.

Сила трения скольжения Fтр между поверхностями соприкасающихся тел при их относительном движении зависит от силы нормальной реакции N , или от силы нормального давления Pn , причем Fтр=kN или Fтр=kPn , где k – коэффициент трения скольжения , зависящий от тех же факторов, что и коэффициент трения покоя k0 , а также от скорости относительного движения соприкасающихся тел.

16. Трение качения – это перекатывание одного тела по другому. Сила трения скольжения не зависит от величины трущихся поверхностей, а только от качества поверхностей трущихся тел и от силы, снижающей трущиеся поверхности и направленной перпендикулярно к ним. F=kN , где F – сила трения, N – величина нормальной реакции и k – коэффициент трения при скольжении.

17. Равновесие тел при наличии трения - это максимальная сила сцепления пропорциональная нормальному давлению тела на плоскость.

Угол между полной реакцией, построенной на наибольшей силе трения при данной нормальной реакции, и направлением нормальной реакции, называется углом трения.

Конус с вершиной в точке приложения нормальной реакции шероховатой поверхности, образующая которого составляет угол трения с этой нормальной реакцией, называется конусом трения.

Динамика.

1. Вдинамике рассматривается влияние взаимодействий между телами на их механическое движение.

Масса - это малярная характеристика материальной точки. Масса постоянна. Масса адьетивна (складывается)

Сила – это вектор, который полностью характеризует взаимодействие на ней материальной точки с другими материальными точками.

Материальная точка – тело, размеры и форма которого несущественны в рассматриваемом движении.(ex: в поступательном движении твердое тело можно считать материальной точкой)

Системой материальных точек наз. множество материальных точек, взаимодействующих между собой.

1 закон Ньютона: любая материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока внешние воздействия не изменят этого состояния.

2 закон Ньютона: ускорение, приобретаемое материальной точкой в инерциальной системе отсчета, прямо пропорционально действующей на точку силе, обратно пропорционально массе точки и по направлению совпадает с силой: a=F/m

Равновесие механической системы — это состояние, при котором все точки механической системы находятся в покое по отношению к рассматриваемой системе отсчета. Если система отсчета инерциальна, равновесие называется абсолютным , если неинерциальна — относительным .

Для нахождения условий равновесия абсолютно твердого тела необходимо мысленно разбить его на большое число достаточно малых элементов, каждый из которых можно представить материальной точкой. Все эти элементы взаимодействуют между собой — эти силы взаимодействия называются внутренними . Помимо этого на ряд точек тела могут действовать внешние силы.

Согласно второму закону Ньютона , чтобы ускорение точки равнялось нулю (а ускорение покоящейся точки равно нулю), геометрическая сумма сил, действующих на эту точку, должна быть равна нулю. Если тело находится в покое, значит, все его точки (элементы) также находятся в покое. Следовательно, для любой точки тела можно записать:

где — геометрическая сумма всех внешних и внутренних сил, действующих на i -й элемент тела.

Уравнение означает, что для равновесия тела необходимо и достаточно, чтобы геометрическая сумма всех сил, действующих на любой элемент этого тела, была равна нулю.

Из легко получить первое условие равновесия тела (системы тел). Для этого достаточно просуммировать уравнение по всем элементам тела:

.

Вторая сумма равна нулю согласно третьему закону Ньютона : векторная сумма всех внутренних сил системы равна нулю, т. к. любой внутренней силе соответствует сила, равная по модулю и противоположная по направлению.

Следовательно,

.

Первым условием равновесия твердого тела (системы тел) является равенство нулю геометрической суммы всех внешних сил, приложенных к телу.

Это условие является необходимым, но не достаточным. В этом легко убедиться, вспомнив о вращающем действии пары сил, геометрическая сумма которых тоже равна нулю.

Вторым условием равновесия твердого тела является равенство нулю суммы моментов всех внешних сил, действующих на тело, относительно любой оси.

Таким образом, условия равновесия твердого тела в случае произвольного числа внешних сил выглядят так:

.

Читайте также: