Какого типа системы счисления бывают. Перевод из десятичной системы счисления. Перевод чисел из двоичной системы счисления в десятичную

3.1. Основные понятия систем счисления

3.2. Виды систем счисления

3.3. Правила перевода чисел из одной системы счисления в другую

3.4. Иллюстрированный вспомогательный материал

3.5. Тестирование

3.6. Контрольные вопросы

Разные народы в разные времена использовали разные системы счисления. Следы древних систем счета встречаются и сегодня в культуре многих народов. К древнему Вавилону восходит деление часа на 60 минут и угла на 360 градусов. К Древнему Риму - традиция записывать в римской записи числа I, II, III и т. д. К англосаксам - счет дюжинами: в году 12 месяцев, в футе 12 дюймов, сутки делятся на 2 периода по 12 часов.

По современным данным, развитые системы нумерации впервые появились в древнем Египте. Для записи чисел египтяне применяли иероглифы один, десять, сто, тысяча и т.д. Все остальные числа записывались с помощью этих иероглифов и операции сложения. Недостатки этой системы - невозможность записи больших чисел и громоздкость.

В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.

3.1. Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления . Основание системы записывается в справа числа в нижнем индексе: ;;и т. д.

Различают два типа систем счисления:

позиционные , когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные , когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д.

Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S- основание системы счисления;

Цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

3.2. Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2.Запись чисел в римской системе счисления

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления , её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная . Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

1. Порядковый счет в различных системах счисления.

В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».

Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.

Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.

Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):

0 0 0 0
1 1 1 1
2 10 2 2
3 11 10 3
4 100 11 4
5 101 12 10
6 110 20 11
7 111 21 12
8 1000 22 13
9 1001 100 14
10 1010 101 20
11 1011 102 21
12 1100 110 22
13 1101 111 23
14 1110 112 24
15 1111 120 30

Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10
11
12 10
13 11
14 12
15 13

2.Перевод из десятичной системы счисления в любую другую.

Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 1. Переведем десятичное число 46 в двоичную систему счисления.

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

3. Перевод из любой системы счисления в десятичную.

Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.

Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:

Это и есть десятичная запись нашего числа, т.е.

Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.

Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.

4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).

Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.

Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:

Таблицу соответствия мы научились строить в п.1.

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7

Т.е.

Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.

Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.

Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.

Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:




Введение

Современный человек в повседневной жизни постоянно сталкивается с числами: мы запоминаем номера автобусов и телефонов, в магазине

подсчитываем стоимость покупок, ведём свой семейный бюджет в рублях и копейках (сотых долях рубля) и т.д. Числа, цифры. Они с нами везде.

Понятие числа - фундаментальное понятие как математики, так и информатики. Сегодня, в самом конце XX века, для записи чисел человечество использует в основном десятичную систему счисления. А что такое система счисления?

Система счисления - это способ записи (изображения) чисел.

Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы: позиционные и непозиционные. Наиболее совершенными являются позиционные системы счисления, т.е. системы записи чисел, в которых вклад каждой цифры в величину числа зависит от её положения (позиции) в последовательности цифр, изображающей число. Например, наша привычная десятичная система является позиционной: в числе 34 цифра 3 обозначает количество десятков и "вносит" в величину числа 30, а в числе 304 та же цифра 3 обозначает количество сотен и "вносит" в величину числа 300.

Системы счисления, в которых каждой цифре соответствует величина, не зависящая от её места в записи числа, называются непозиционными.

Позиционные системы счисления - результат длительного исторического развития непозиционных систем счисления.


1.История систем счисления

  • Единичная система счисления

Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов, например овец, изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждой овце в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).

Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков - "палочка". Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых и равнялось обозначаемому числу.

Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.

Можно предложить, что для облегчения счёта люди стали группировать предметы по 3, 5, 10 штук. И при записи использовали знаки, соответствующие группе из нескольких предметов. Естественно, что при подсчёте использовались пальцы рук, поэтому первыми появились знаки для обозначения группа предметов из 5 и 10 штук (единиц). Таким образом, возникли уже более удобные системы записи чисел.

  • Древнеегипетская десятичная непозиционная система счисления

В древнеегипетской системе счисления, которая возникла во второй половине третьего тысячелетия до н.э., использовались специальные цифры для обозначения чисел 1, 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 . Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз.

Пример. Число 345 древние египтяне записывали так:

Рисунок 1 Запись числа древнеегипетской системой счисления

Обозначение цифр в непозиционной древнеегипетской системе счисления:

Рисунок 2 Единица

Рисунок 3 Десятки

Рисунок 4 Сотни

Рисунок 5 Тысячи

Рисунок 6 Десятки тысяч

Рисунок 7 Сотни тысяч

В основе как палочной, так и древнеегипетской системы счисления лежал простой принцип сложения, согласно которому значение числа равно сумме значений цифр, участвующих в его записи. Учёные относят древнеегипетскую систему счисления к десятичной непозиционной.

  • Вавилонская(шестидесятеричная) система счисления

Числа в этой системе счисления составлялись из знаков двух видов: прямой клин (рисунок 8) служил для обозначения единиц, лежачий клин (рисунок 9) - для обозначения десятков.

Рисунок 8 Прямой клин

Рисунок 9 Лежачий клин

Таким образом, число 32 записывали так:

Рисунок 10 Запись числа 32 на вавилонской шестидесятеричной системе счисления

Число 60 снова обозначалось тем же знаком(рисунок 8) , что и 1. Этим же знаком обозначались числа 3600 = 60 2 , 216000 = 60 3 и все другие степени 60. Поэтому вавилонская система счисления получила название шестидесятеричной.

Для определения значения числа нужно было изображение числа разбить на разряды справа налево. Чередование групп одинаковых знаков ("цифр") соответствовало чередованию разрядов:

Рисунок 11 Разбивание на разряды числа

Значение числа определяли по значениям составляющих его "цифр", но с учетом того, что "цифры" в каждом последующем разряде значили в 60 раз больше тех же "цифр" в предыдущем разряде.

Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а число в целом - в позиционной системе с основанием 60.

Запись числа у вавилонян была неоднозначной, так как не существовало "цифры" для обозначения нуля. Запись числа 92, могла обозначать не только 92 = 60 + 32, но и 3632 = 3600 + 32 = 602 + 32 и т.д. Для определения абсолютного значения числа требовались дополнительные сведения. Впоследствии вавилоняне ввели специальный символ (рисунок 12) для обозначения, пропущенного шестидесятеричного разряда, что соответствует в привычной нам десятичной системе появлению цифры 0 в записи числа. Но в конце числа этот символ обычно не ставился, то есть этот символ не был нулем в нашем понимании.

Рисунок 12 Символ для обозначения пропущенного шестидесятеричного разряда

Таким образом, число 3632 теперь нужно было записывать так:

Рисунок 13 Запись числа 3632

Таблицу умножения вавилоняне никогда не запоминали, так как это было практически невозможно. При вычислениях они пользовались готовыми таблицами умножения.

Шестидесятеричная вавилонская система - первая известная нам система счисления, основанная на позиционном принципе. Система вавилонян сыграла большую роль в развитии математики и астрономии, ее следы сохранились до наших дней. Так, мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Точно также же, следуя примеру вавилонян, окружность мы делим на 360 частей (градусов).

  • Римская система счисления

Примером непозиционной системы счисления, которая сохранилась до наших дней, может служить системы счисления, применявшаяся более двух с половиной тысяч лет назад в Древнем Риме.

В основе римской системы счисления лежат знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а также специальные знаки для обозначения чисел 50, 100, 500 и 1000.

Обозначения для последних четырех чисел с течением времени претерпели значительные изменения. Ученые предполагают, что первоначально знак для числа 100 имел вид пучка из трех черточек наподобие русской буквы Ж, а для числа 50 — вид верхней половинки этой буквы, которая в дальнейшем трансформировалась в знак L:

Рисунок 14 Трансформация числа 100

Для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Centum — сто, Demimille — половина тысячи, Mille — тысяча).

Чтобы записать число, римляне использовали не только сложение, но и вычитание ключевых чисел. При этом применялось следующее правило.

Значение каждого меньшего знака, поставленного слева от большего, вычитается из значения большего знака.

Например, запись IX обозначает число 9, а запись XI — число 11. Десятичное число 28 представляется следующим образом:

XXVIII = 10 + 10 + 5 + 1 + 1 + 1.

Десятичное число 99 имеет такое представление:

Рисунок 15 Число 99

То, что при записи новых чисел ключевые числа могут не только складываться, но и вычитаться, имеет существенный недостаток запись римскими цифрами лишает число единственности представления. Действительно, в соответствии с приведенным выше правилом, число 1995 можно записать, например, следующими способами:

MCMXCV = 1000 + (1000 - 100) + (100 -10) + 5,

MDCCCCLXXXXV = 1000 + 500 + 100 + 100 + 100 + 100 + 50 + 10 + 10 + 10 + 10 + 5

MVM = 1000 + (1000 - 5),

MDVD = 1000 + 500 + (500 - 5) и так далее.

Единых правил записи римских чисел до сих пор нет, но существуют предложения о принятии для них международного стандарта.

В наши дни любую из римских цифр предлагается записывать в одном числе не более трех раз подряд. На основании этого построена таблицы, которой удобно пользоваться для обозначения чисел римскими цифрами:

Единицы

Десятки

Сотни

Тысячи

10 X

100 C

1000 M

2 II

20 XX

200 CC

2000 MM

3 III

30 XXX

300 CCC

3000 MMM

4 IV

40 XL

400 CD

50 L

500 D

6 VI

60 LX

600 DC

7 VII

70 LXX

700 DCC

8 VIII

80 LXXX

800 DCCC

9 IX

90 XC

900 CM

Таблица 1 Таблица римских цифр

Римскими цифрами пользовались очень долго. Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами (считалось, что обычные арабские цифры легко подделать).

В настоящее время римская система счисления не применяется, за некоторыми исключениями:

  • Обозначения веков (XV век и т.д.), годов н. э. (MCMLXXVII т. д.) и месяцев при указании дат (например, 1. V.1975).
  • Обозначение порядковых числительных.
  • Обозначение производных небольших порядков, больших трёх: yIV, yV и т.д.
  • Обозначение валентности химических элементов.
    • Славянская система счисления

Эта нумерация была создана вместе со славянской алфавитной системой для переписки священных книг для славян греческими монахами братьями Кириллом (Константином) и Мефодием в IX веке. Эта форма записи чисел получила большое распространение в связи с тем, что имела полное сходство с греческой записью чисел.

Единицы

Десятки

Сотни

Таблица 2 Славянская система счисления

Если посмотреть внимательно, то увидим, что после "а" идет буква "в", а не "б" как следует по славянскому алфавиту, то есть используются только буквы, которые есть в греческом алфавите. До XVII века эта форма записи чиcел была официальной на территории современной России, Белоруссии, Украины, Болгарии, Венгрии, Сербии и Хорватии. До сих пор в православных церковных книгах используется эта нумерация.

  • Система счисления майя

Эта система использовалась для календарных расчетов. В быту майя использовали непозиционную систему сходную с древнеегипетской. Об этой системе дают представление сами цифры майя, которые можно трактовать как запись первых 19 натуральных чисел в пятеричной непозиционной системе счисления. Аналогичный принцип составных цифр использован в вавилонской шестидесятеричной системе счисления.

Цифры майя состояли из нуля (знак ракушки) и 19 составных цифр. Эти цифры конструировались из знака единицы (точка) и знака пятёрки (горизонтальная черта). Например, цифра, обозначающая число 19, писалась как четыре точки в горизонтальном ряду над тремя горизонтальными линиями.

Рисунок 16 Система счисления майя

Числа свыше 19 писались согласно позиционному принципу снизу вверх по степеням 20. Например:

32 писалось как (1)(12) = 1×20 + 12

429 как (1)(1)(9) = 1×400 + 1×20 + 9

4805 как (12)(0)(5) = 12×400 + 0×20 + 5

Для записи цифр от 1 до 19 иногда также использовались изображения божеств. Такие цифры использовались крайне редко, сохранившись лишь на нескольких монументальных стелах.

Позиционная система счисления требует использования нуля для обозначения пустых разрядов. Первая дошедшая до нас дата с нулём (на стеле 2 в Чиапа-де Корсо, Чиапас) датирована 36 годом до н. э. Первая позиционная система счисления в Евразии, созданная в древнем Вавилоне за 2000 лет до н. э., первоначально нуля не имела, а впоследствии знак нуля использовался только в промежуточных разрядах числа, что приводило к неоднозначной записи чисел. Непозиционные системы счисления древних народов нуля, как правило, не имели.

В «долгом счёте» календаря майя была использована разновидность 20-ричной системы счисления, в которой второй разряд мог содержать только цифры от 0 до 17, после чего к третьему разряду добавлялась единица. Таким образом, единица третьего разряда означала не 400, а 18×20 = 360, что близко к числу дней в солнечном году.

  • История арабских чисел

Это, самая распространенная на сегодняшний день нумерация. Название "арабская" для нее не совсем верно, поскольку хоть и завезли ее в Европу из арабских стран, но там она тоже была не родной. Настоящая родина этой нумерации - Индия.

В различных районах Индии существовали разнообразные системы нумерации, но в какой-то момент среди них выделилась одна. В ней цифры имели вид начальных букв соответствующих числительных на древнеиндийском языке - санскрите, использующем алфавит "Деванагари".

Первоначально этими знаками представлялись числа 1, 2, 3, … 9, 10, 20, 30, …, 90, 100, 1000; с их помощью записывались другие числа. Но в последствии был введен особый знак - жирная точка, или кружок, для указания пустующего разряда; и нумерация "Деванагари" превратилась в поместную десятичную систему. Как и когда совершился такой переход - до сих пор неизвестно. К середине VIII века позиционная система нумерации получает широкое применение. В это же время она проникает в соседние страны: Индокитай, Китай, Тибет, Среднюю Азию.

Решающую роль в распространении индийской нумерации в арабских странах сыграло руководство, составленное в начале IX века Мухаммедом Аль Хорезми. Оно было переведено в Западной Европе на латинский язык в XII веке. В XIII веке индийская нумерация получает преобладание в Италии. В других странах она распространяется к XVI веку. Европейцы, заимствовав нумерацию у арабов, называли ее "арабской". Это исторически неправильное название удерживается и поныне.

Из арабского языка заимствовано и слово "цифра" (по-арабски "сыфр"), означающее буквально "пустое место" (перевод санскритского слова "сунья", имеющего тот же смысл). Это слово применялось для названия знака пустого разряда, и этот смысл сохраняло до XVIII века, хотя еще в XV веке появился латинский термин "нуль" (nullum - ничто).

Форма индийских цифр претерпевала многообразные изменения. Та форма, которой мы сейчас пользуемся установилась в XVI веке.

  • История нуля

Нуль бывает разный. Во-первых, нуль – это цифра, которая используется для обозначения пустого разряда; во-вторых, нуль – это необычное число, так как на нуль делить нельзя и при умножении на нуль любое число становиться нулем; в-третьих, нуль нужен для вычитания и сложения, иначе, сколько будет, если из 5 вычесть 5?

Впервые нуль появился в древневавилонской системе счисления, он использовался для обозначения пропущенных разрядов в числах, но такие числа как 1 и 60 у них записывали одинаково, так как нуль в конце числа у них не ставился. В их системе нуль выполнял роль пробела в тексте.

Изобретателем формы нуля можно считать великого греческого астронома Птолемея, так как в его текстах на месте знака пробела стоит греческая буква омикрон, очень напоминающая современный знак нуля. Но Птолемей использует нуль в том же смысле, что и вавилоняне.

На стенной надписи в Индии в IX веке н.э. впервые символ нуля встречается в конце числа. Это первое общепринятое обозначение современного знака нуля. Именно индийские математики изобрели нуль во всех его трех смыслах. Например, индийский математик Брахмагупта еще в VII века н.э. активно стал использовать отрицательные числа и действия с нулем. Но он утверждал, что число, деленное на нуль, есть нуль, что конечно ошибка, но настоящая математическая дерзость, которая привела к другому замечательному открытию индийских математиков. И в XII веке другой индийский математик Бхаскара делает еще попытку понять, что же будет при делении на нуль. Он пишет: "количество, деленное на нуль, становится дробью, знаменатель которой равен нулю. Эту дробь называют бесконечностью".

Леонардо Фибоначчи, в своем сочинении "Liber abaci" (1202) называет знак 0 по-арабски zephirum. Слово zephirum – это арабское слово as-sifr, которое произошло от индийского слова sunya, т. е. пустое, служившего названием нуля. От слова zephirum произошло французское слово zero (нуль) и итальянское слово zero. С другой стороны, от арабского слова as-sifr произошло русское слово цифра. Вплоть до середины XVII века это слово употреблялось специально для обозначения нуля. Латинское слово nullus (никакой) вошло в обиход для обозначения нуля в XVI веке.

Нуль - это уникальный знак. Нуль – это чисто абстрактное понятие, одно из величайших достижений человека. Его нет в природе окружающей нас. Без нуля можно спокойно обойтись в устном счете, но невозможно обойтись для точной записи чисел. Кроме этого, нуль находится в противовесе всем остальным числам, и символизирует собой бесконечный мир. И если “все есть число”, то ничто есть все!

  • Недостатки непозиционной системы счисления

Непозиционные системы счисления имеют ряд существенных недостатков:

1.Существует постоянная потребность введения новых знаков для записи больших чисел.

2.Невозможно представлять дробные и отрицательные числа.

3.Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения. В частности, у всех народов наряду с системами счисления были способы пальцевого счета, а у греков был счетная доска абак – что-то наподобие наших счетов.

Но мы до сих пор пользуемся элементами непозиционной системы счисления в обыденной речи, в частности, мы говорим сто, а не десять десятков, тысяча, миллион, миллиард, триллион.


2.Двоичная система счисления.

В этой системе всего две цифры - 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т.д. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически. Наиболее простыми с точки зрения технической реализации являются двухпозиционные элементы, например, электромагнитное реле, транзисторный ключ.

  • История двоичной системы счисления

В основу поисков инженеры и математики положили двоичную двухпозиционную - природу элементов вычислительной техники.

Возьмите, к примеру, двухполюсный электронный прибор - диод. Он может находиться только в двух состояниях: или проводит электрический ток - «открыт», или не проводит его - «заперт». А триггер? Он тоже имеет два устойчивых состояния. По такому же принципу работают запоминающие элементы.

Почему же не использовать тогда двоичную систему счисления? Ведь в ней только две цифры: 0 и 1. А это удобно для работы на электронной машине. И новые машины стали считать с помощью 0 и 1.

Не думайте, что двоичная система - современница электронных машин. Нет, она намного старше. Двоичным счислением люди интересуются давно. Особенно им увлекались с конца XVI до начала XIX века.

Лейбниц считал двоичную систему простой, удобной и красивой. Он говорил, что «вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

По просьбе ученого в честь «диадической системы» - так тогда называли двоичную систему - была выбита медаль. На ней изображалась таблица с числами и простейшие действия с ними. По краю медали вилась лента с надписью: «Чтобы вывести из ничтожества все, достаточно единицы».

Формула 1 Количество информации в битах

  • Перевод из двоичной в десятичную систему счисления

Задача перевода чисел из двоичной системы счисления в десятичную чаще всего возникает уже при обратном преобразовании вычисленных либо обработанных компьютером значений в более понятные пользователю десятичные цифры. Алгоритм перевода двоичных чисел в десятичные достаточно прост (его иногда называют алгоритмом замещения):

Для перевода двоичного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания двоичной системы счисления на соответствующие цифры в разрядах двоичного числа.

Например, требуется перевести двоичное число 10110110 в десятичное. В этом числе 8 цифр и 8 разрядов (разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 2:

10110110 2 = (1·2 7 )+(0·2 6 )+(1·2 5 )+(1·2 4 )+(0·2 3 )+(1·2 2 )+(1·2 1 )+(0·2 0 ) = 128+32+16+4+2 = 182 10

В электронике устройство, осуществляющее похожее преобразование, называется дешифратором (декодером, англ. decoder).

Дешифратор — это схема преобразующая двоичный код, подаваемый на входы, в сигнал на одном из выходов, то есть дешифратор расшифровывает число в двоичном коде, представляя его логической единицей на выходе, номер которого соответствует десятичному числу.

  • Перевод из двоичной в шестнадцатеричную систему счисления

Каждый разряд шестнадцатеричного числа содержит 4 бита информации.

Таким образом, для перевода целого двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры (тетрады), начиная справа, и, если в последней левой группе окажется меньше четырех цифр, дополнить ее слева нулями. Для перевода дробного двоичного числа (правильной дроби) в шестнадцатеричное необходимо разбить его на тетрады слева направо и, если в последней правой группе окажется меньше четырех цифр, то необходимо дополнить ее справа нулями.

Затем надо преобразовать каждую группу в шестнадцатеричную цифру, воспользовавшись для этого предварительно составленной таблицей соответствия двоичных тетрад и шестнадцатеричных цифр.

Шестнад-

теричное

число

Двоичная

тетрада

Таблица 3 Таблица шестнадцатеричных цифр и двоичных тетрад

  • Перевод из двоичной в восьмеричную систему счисления

Перевести двоичное число в восьмеричную систему достаточно просто, для этого нужно:

  1. Разбить двоичное число на триады (группы из 3-х двоичных цифр), начиная с младших разрядов. Если в последней триаде (старшие разряды) будет меньше трех цифр, то дополним ее до трех нулями слева.
    1. Под каждой триадой двоичного числа записать соответствующую ей цифру восьмеричного числа из следующей таблицы.

Восьмеричное

число

Двоичная триада

Таблица 4 Таблица восьмеричных чисел и двоичных триад


3.Восьмеричная система счисления

Восьмеричная система счисления — это позиционная система счисления с основанием 8. Для записи чисел в восьмеричной системе используется 8 цифр от нуля до семи (0,1,2,3,4,5,6,7).

Применение: восьмеричная система наряду с двоичной и шестнадцатеричной используется в цифровой электронике и компьютерной технике, однако в настоящее время применяется редко (ранее использовалась в низкоуровневом программировании, вытеснена шестнадцатеричной).

Широкое применение восьмеричной системы в электронной вычислительной технике объясняется тем, что для нее характерен легкий перевод в двоичную и обратно с помощью простой таблицы, в которой все цифры восьмеричной системы от 0 до 7 представлены в виде двоичных триплетов (Таблица 4).

  • История восьмеричной системы счисления

История: возникновение восьмеричной системы связывают с такой техникой счета на пальцах, когда считались не пальцы, а промежутки между ними (их всего восемь).

В 1716 году король Швеции Карл XII предложил известному шведскому философу Эмануэлю Сведенборгу разработать числовую систему, основанную на 64 вместо 10. Однако Сведенборг считал, что для людей с меньшим интеллектом, чем король, оперировать такой системой счисления будет слишком трудно и предложил в качестве основания число 8. Система была разработана, но смерть Карла XII в 1718 году помешала ввести ее как общепринятую, данная работа Сведенборга не опубликована.

  • Перевод из восьмеричной в десятичную систему счисления

Для перевода восьмеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания восьмеричной системы счисления на соответствующие цифры в разрядах восьмеричного числа. [ 24]

Например, требуется перевести восьмеричное число 2357 в десятичное. В этом числе 4 цифры и 4 разряда (разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 8:

23578 = (2·83)+(3·82)+(5·81)+(7·80) = 2·512 + 3·64 + 5·8 + 7·1 = 126310

  • Перевод из восьмеричной в двоичную систему счисления

Для перевода из восьмеричной в двоичную систему нужно каждую цифру числа надо преобразовать в группу из трех двоичных цифр триаду(Таблица 4).

  • Перевод из восьмеричной в шестнадцатеричную систему счисления

Для перевода из шестнадцатеричной в двоичную систему нужно каждую цифру числа надо преобразовать в группу из трех двоичных цифр тетраду (Таблица 3).


3.Шестнадцатеричная система счисления

Позиционная система счисления по целочисленному основанию 16.

Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами.

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).

Шестнадцатеричный цвет — запись трёх компонент цвета (R, G и B) в шестнадцатеричном виде.

  • История шестнадцатеричной системы счисления

Шестнадцатеричная система счисления внедрена американской корпорацией IBM. Широко используется в программировании для IBM-совместимых компьютеров. Минимальной адресуемой (пересылаемой между компонентами компьютера) единицей информации является байт, состоящий, как правило, из 8 бит (англ. bit — binary digit — двоичная цифра, цифра двоичной системы), а два байта, то есть 16 бит, составляют машинное слово (команду). Таким образом, для записи команд удобно использовать систему с основанием 16.

  • Перевод из шестнадцатеричной в двоичную систему счисления

Алгоритм перевода чисел из шестнадцатеричной системы счисления двоичную крайне прост. Необходимо только заменить каждую цифру шестнадцатеричного числа ее эквивалентом в двоичной системе счисления (в случае положительных чисел). Отметим только, что каждое шестнадцатеричное число следует заменять двоичным, дополняя его до 4 разрядов (в сторону старших разрядов).

  • Перевод из шестнадцатеричной в десятичную систему счисления

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число F45ED23C в десятичное. В этом числе 8 цифр и 8 разрядов (помним, что разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

F45ED23C 16 = (15·16 7 )+(4·16 6 )+(5·16 5 )+(14·16 4 )+(13·16 3 )+(2·16 2 )+(3·16 1 )+(12·16 0 ) = 4099854908 10

  • Перевод из шестнадцатеричной в восьмеричную систему счисления

Обычно при переводе чисел из шестнадцатеричной в восьмеричную систему счисления вначале шестнадцатеричное число переводят в двоичное, затем разбивают его на триады, начиная с младшего бита, а потом заменяют триады соответствующими им эквивалентами в восьмеричной системе(Таблица 4).


Заключение

Сейчас в большинстве стран мира, несмотря на то, что там говорят на разных языках, считают одинаково, "по-арабски".

Но так было не всегда. Еще каких-то пятьсот лет назад ничего подобного и в помине не было даже в просвещенной Европе, не говоря уже о какой-нибудь Африке или Америке.

Но тем не менее числа люди все равно как-то записывали. У каждого народа была своя собственная или позаимствованная у соседа система записи чисел. Одни использовали буквы, другие - значки, третьи - закорючки. У кого-то получалось удобнее, у кого-то не очень.

На данный момент мы используем разные системы счисления разных народов, не смотря на то, что десятичная система счисления имеет ряд преимуществ перед остальными.

Вавилонская шестидесятеричная система счисления до сих используется в астрономии. Ее след сохранился до наших дней. Мы до сих пор измеряем время в шестидесяти секундах, в часах шестьдесят минут, также она применяется в геометрии для измерения углов.

Римская непозиционная система счисления используется нами для обозначения параграфов, разделов и в конечно же в химии.

В компьютерных технологиях используется двоичная система. Именно из-за использования всего двух чисел 0 и 1 она лежит в основе работы компьютера, так как у него два устойчивых состояния: низкое или высокое напряжение, есть ток или нет тока, намагничено или не намагничено.Для людей двоичная система счисления не удобна из-за громоздкости записи кода, но переводить числа из двоичную систему в десятичную и обратно не так уж и удобно, поэтому стали использовать восьмеричную и шестнадцатеричную системы счисления.


Список рисунков


Список таблиц


Формулы


Список литературы и источников

  1. Берман Н.Г. "Счет и число". ОГИЗ Гостехиздат Москва 1947 год.
  2. Бругш Г. Все о Египте– М:. Ассоциация Духовного Единения «Золотой Век», 2000. — 627 с.
  3. Выгодский М. Я. Арифметика и алгебра в Древнем мире – М.: Наука, 1967.
  4. Ван дер Варден Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции / Пер. с голл. И. Н. Веселовского. — М., 1959. — 456 с.
  5. Г. И. Глейзер. История математики в школе. М.: Просвещение, 1964, 376 с.
  6. Босова Л. Л. Информатика: Учебник для 6 класса
  7. Фомин С.В. Системы счисления, М.: Наука, 2010
  8. Всевозможные нумерации и системы счисления (http://www.megalink.ru/~agb/n/numerat.htm )
  9. Математический энциклопедический словарь. — М.: «Сов. энциклопедия », 1988. — С. 847
  10. Талах В.Н., Куприенко С.А. Америка первоначальная. Источники по истории майя, наука (астеков) и инков
  11. Талах В.М. Введение в иероглифическую письменность Майя
  12. А.П.Юшкевич, История математики, Том 1, 1970
  13. И. Я. Депман, История арифметики, 1965
  14. Л.З.Шауцукова, "Основы информатики в вопросах и ответах", Издательский центр "Эль-Фа", Нальчик, 1994
  15. А.Костинский, В.Губайловский, Триединый нуль (http://www.svoboda.org/programs/sc/2004/sc.011304.asp )
  16. 2007-2014 "История компьютера" (http://chernykh.net/content/view/50/105/ )
  17. Информатика. Базовый курс. / Под ред. С.В.Симоновича. - Спб., 2000 г.
  18. Зарецкая И.Т., Колодяжный Б.Г., Гуржий А.Н., Соколов А.Ю. Информатика:Учебное пособие для 10 – 11 кл. средних общеобразовательных школ. – К.: Форум, 2001. – 496 с.
  19. ГлавСправ 2009–2014(http://edu.glavsprav.ru/info/nepozicionnyje-sistemy-schisleniya/ )
  20. Информатика. Компьютерная техника. Компьютерные технологии. / Пособие под ред. О.И.Пушкаря.- Издательский центр "Академия", Киев, - 2001 г.
  21. Учебное пособие «Арифметические основы ЭВМ и систем». Часть 1. Системы счисления
  22. О.Ефимова, В.Морозова, Н.Угринович «Курс компьютерной технологии»учебное пособие для старших классов
  23. Каган Б.М. Электронные вычислительные машины и системы.- М.:Энергоатомиздат, 1985
  24. Майоров С.А., Кириллов В.В., Приблуда А.А., Введение в микроЭВМ, Л.: Машиностроение, 1988.
  25. Фомин С.В. Системы счисления, М.: Наука, 1987
  26. Выгодский М.Я. Справочник по элементарной математике, М.: Государственное издательство технико-теоретической литературы, 1956.
  27. Математическая энциклопедия. М: “Советская энциклопедия” 1985г.
  28. Шауман А. М. Основы машинной арифметики. Ленинград, Издательство Ленинградского университета. 1979г.
  29. Ворощук А. Н. Основы ЦВМ и программирования. М:”Наука” 1978г.
  30. Ролич Ч. Н. – От 2 до 16, Минск, «Высшая школа», 1981г.

Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Такие символы называют цифрами.

Системы счисления

Для представления чисел используются непозиционные и позиционные системы счисления.

Непозиционные системы счисления

Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков (бирок): зарубок, черточек, точек. Позже, для облегчения счета, эти значки стали группировать по три или по пять. Такая система записи чисел называется единичной (унарной) , так как любое число в ней образуется путём повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня. Так, чтобы узнать, на каком курсе учится курсант военного училища, нужно сосчитать, какое количество полосок нашито на его рукаве. Сами того не осознавая, единичной системой счисления пользуются малыши, показывая на пальцах свой возраст, а счетные палочки используется для обучения учеников 1–го класса счету. Рассмотрим различные системы счисления.

Единичная система – не самый удобный способ записи чисел. Записывать таким образом большие количества утомительно, да и сами записи при этом получаются очень длинными. С течением времени возникли иные, более удобные, системы счисления.

Древнеегипетская десятичная непозиционная система счисления . Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки – иероглифы. Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной. В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа. Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы). Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.

Римская система счисления . Примером непозиционной системы, которая сохранилась до наших дней, может служить система счисления, которая применялась более двух с половиной тысяч лет назад в Древнем Риме. В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча). Чтобы записать число, римляне разлагали его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:

XXVIII=10+10+5+1+1+1 (два десятка, пяток, три единицы).

Для записи промежуточных чисел римляне использовали не только сложение, но и вычитание. При этом применялось следующее правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него. Например, IX – обозначает 9, XI – обозначает 11.

Десятичное число 99 имеет следующее представление:

XCIХ = –10+100–1+10.

Римскими цифрами пользовались очень долго. Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами (считалось, что обычные арабские цифры легко подделать). Римская система счисления сегодня используется, в основном, для наименования знаменательных дат, томов, разделов и глав в книгах.

Алфавитные системы счисления . Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились греческая, славянская, финикийская и другие. В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен (от 100 до 900) обозначались буквами алфавита. В алфавитной системе счисления Древней Греции числа 1, 2, ..., 9 обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел 10, 20, ..., 90 применялись следующие 9 букв а для обозначения чисел 100, 200, ..., 900 – последние 9 букв.

У славянских народов числовые значения букв установились в порядке славянского алфавита, который использовал сначала глаголицу, а затем кириллицу.

В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая арабская нумерация, которой мы пользуемся и сейчас. Славянская нумерация сохранилась только в богослужебных книгах.

Непозиционные системы счисления имеют ряд существенных недостатков:

  • Существует постоянная потребность введения новых знаков для записи больших чисел.
  • Невозможно представлять дробные и отрицательные числа.
  • Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Позиционные системы счисления

В позиционных системах счисления – количественный эквивалент каждой цифры зависит от ее положения (позиции) в коде(записи) числа. Ныне мы привыкли пользоваться десятичной позиционной системой - числа записываются с помощью 10 цифр. Самая правая цифра обозначает единицы, левее - десятки, ещё левее - сотни и т.д.

Например: 1) шестидесятеричная (Древний Вавилон)– первая позиционная система счисления. До сих пор при измерении времени используется основание равное 60 (1мин = 60с, 1ч = 60мин); 2) двенадцатеричная система счисления (широкое распространение получила в XIX в. число 12 – “дюжина”: в сутках две дюжины часов). Счёт не по пальцам, а по суставам пальцев. На каждом пальце руки, кроме большого, по 3 сустава – всего 12; 3) в настоящее время наиболее распространёнными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная (широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами).

В любой позиционной системе число может быть представлено в виде многочлена.

Покажем, как представляют в виде многочлена десятичное число:

Типы систем счисления

Самое главное, что нужно знать о системе счисления – её тип: аддитивная или мультипликативная . В первом типе каждая цифра имеет своё значение, и для прочтения числа нужно сложить все значения использованных цифр:

XXXV = 10+10+10+5 = 35; CCXIX = 100+100+10–1+10 = 219;

Во втором типе каждая цифра может иметь разные значения в зависимости от своего местоположения в числе:

(иероглифы по порядку: 2, 1000, 4, 100, 2, 10, 5)

Здесь дважды использован иероглиф “2”, и в каждом случае он принимал разные значения “2000” и “20”.

2´ 1000 + 4´ 100+2´ 10+5 = 2425

Для аддитивной (“добавительной”) системы нужно знать все цифры-символы с их значениями (их бывает до 4-5 десятков), и порядок записи. Например, в Латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение (IV = (5–1) = 4; VI = (5+1) = 6).

Для мультипликативной системы нужно знать изображение цифр и их значение, а так же основание системы счисления. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”. В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет). Основных цифр здесь тоже 10, и система счисления – десятичная.

Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления. Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. “Но на одной то руке всего пять пальцев” – скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления. “А с ногами – двадцать пальцев” – скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам.

Очень интересно понятие “дюжина”. Всем известно, что это 12, но откуда появилось такое число – мало кто знает. Посмотрите на свои руки, вернее, на одну руку. Сколько фаланг на всех пальцах одной руки, не считая большого? Правильно, двенадцать. А большой палец предназначен отмечать отсчитанные фаланги.

А если на другой руке откладывать пальцами количество полных дюжин, то получим всем известную шестидесятеричную вавилонскую систему.

В разных цивилизациях считали по–разному, но и сейчас можно даже в языке, в названиях и изображениях цифр найти остатки совсем других систем счисления, когда–то использовавшихся этим народом.

Так у французов когда-то была двадцатеричная система счисления, поскольку 80 по-французски звучит как “четырежды двадцать”.

Римляне, или их предшественники использовали когда-то пятеричную систему, так как V ни что иное, как изображение ладони с отставленным большим пальцем, а X – это две таких же руки.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

1476 = 1 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001 2 = 137 10

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Читайте также: